现在的位置: 首页 > 综合 > 正文

IDE、SATA、SCSI、SAS、iSCSI IDE、SATA、SCSI、SAS、iSCSI

2013年06月08日 ⁄ 综合 ⁄ 共 7266字 ⁄ 字号 评论关闭

IDE、SATA、SCSI、SAS、iSCSI

分类:
linux小机基础

481人阅读
评论(0)
收藏
举报

IDE是并口硬盘,(5400-7200转);
SATA是串口硬盘,(7200转);
SCSI是服务器硬盘,(60、80针,10000转)。
硬盘的传输速率:作为电脑中最重要的数据存储设备和数据交换媒介,硬盘传输速率的快慢直接影响了系统的运行速度。不同类型的硬盘,其传输速率往往差别很大。现在主流硬盘主要有三种:按照不同的接口可以分为并口ATA硬盘(即IDE硬盘)、SCSI硬盘和Serial ATA硬盘。 


  小知识:1.硬盘的内部数据传输率 
  内部数据传输率是磁头到硬盘的高速缓存之间的数据传输速度,这可以说是影响硬盘整体性能的关键,一般取决于硬盘的盘片转速和盘片数据线密度。在这项指标中常常使用MB/s或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/s(兆字节/秒),就必须将Mbps数据除以8。例如有的硬盘给出最大内部数据传输率为240Mbps,但如果按MB/s计算就只有30MB/s。由此可以看出目前硬盘作为电脑的瓶颈,其病根还在于硬盘的内部数据传输率上。 
  2.硬盘的外部数据传输率 
  指从硬盘缓冲区读取数据的速率。它与硬盘的接口类型是直接挂钩的,因此在广告或硬盘特性表中常以数据接口速率代替,单位为MB/s如我们平常所说的ATA100/133硬盘。 
  光驱的传输速率:通常光驱传输速率的高低取决于光驱的倍速,如16X DVD、52X的CD-ROM,一般情况下光驱的倍速越高,数据传输也就越快。那么“倍速”是个什么概念呢?原来很早以前CD-ROM的传输速率很低,每秒只能传送150KB字节,即最初光驱的速率为150KB/s,这就是1X(单倍速)的CD-ROM光驱。后来随着CD-ROM光驱技术的日新月异,其速率越来越快,为了区分不同速率的光驱,于是把最初的150KB/s作为基准进行衡量得到相应的倍速值。如50X的CD-ROM就是指其传输的速度是1X光驱的50倍即其速率为50×150KB/s=7500KB/s。而现在流行的DVD-ROM的速率算法也基本相同,只不过DVD-ROM的单倍速率要比CD-ROM高得多,一倍速的DVD-ROM速率理论上可以达到1358KB/s,由此我们可以算出现在流行的16倍速DVD-ROM的速度应该是1358KB/s×16=21728KB/s。

1、SCSI(小型计算机系统接口(英语:Small
Computer System Interface; 简写:SCSI))

SCSI接口不是专为硬盘设计的,实际上它是一种总线型的接口,独立于系统总线工作。SCSI接口的硬盘以高稳定性、低CPU占有率而被广泛应用于服务器和专业工作站中,它的传输速率最高可达320MB/s。当然,对于硬盘的整体性能而言,除了硬盘的传输速率,硬盘的转速、缓存及平均寻道时间等也是重要的因素。 

一种用于计算机和智能设备之间(硬盘、软驱、光驱打印机扫描仪等)系统级接口的独立处理器标准。
SCSI是一种智能的通用
接口标准。它是各种计算机与外部设备之间的接口标准。

SCSI接口是一个通用接口在SCSI母线上可以连接主机适配器和八个SCSI外设控制器,外设可以包括磁盘磁带CD-ROM、可擦写光盘驱动器打印机扫描仪和通讯设备等。

  ●SCSI是个多任务接口,设有母线仲裁功能。挂在一个SCSI母线上的多个外设可以同时工作。SCSI上的设备平等占有总线。

  ●SCSI接口可以同步或异步传输数据,同步传输速率可以达到10MB/s,异步传输速率可以达到1.5MB/s。

  ●SCSI接口接到外置设备时.它的连接电缆可以长达6m。

编辑本段历史

  最初的SCSI标准的最大同步传输速率为5MB/s(SCSI-1,又名Narrow
SCSI,1986年,最大支持7个
设备时钟频率为5MHz),后来的SCSI
II 规定了2种提高速度的选择。一种为提高数据传输的频率,即Fast SCSI(1994年,最大支持7个
设备),由于频率提高一倍,达10MB/s(10MHz);另一种提高速度的选择是传输频率提高一倍的同时也增大数据通路的宽度,由8位增至16位,即Wide
SCSI,其最大
同步传输速度为20MB/s (时钟频率为10MHz,1996年,最大支持15个设备)。

  1995年左右出现了第三代SCSI,但没有统一标准:

  1. 最大同步传输速度达到20MB/s的Ultra SCSI(又称为Fast-20
SCSI,时钟频率为20MHz);

  2.最大同步传输速度达到40MB/s的Ultra Wide
SCSI(同1);

  3.最大同步传输速度达到40MB/s的Ultra2 SCSI(又称为Fast-40
SCSI,时钟频率为40MHz,1997年)。

  稍后,又出现了一些更新的SCSI标准:

  1. 最大同步传输速度达到80MB/s的Ultra2 Wide
SCSI(时钟频率为40MHz);

  2.最大同步传输速度达到160MB/s的Ultra 3 SCSI(又名Ultra-160或者Fast-80
W
ide SCSI,时钟频率为40MHz加双倍数据速率,1999年);

  3.最大同步传输速度达到320MB/s的Ultra 320 SCSI(又名Ultra
4 SCSI,时钟频率为80MHz加双倍数据速率,2002年);


4.最大同步传输速度达到640MB/s的Ultra 640 SCSI(时钟频率为160MHz加双倍数据速率,2003年,是目前最新的SCSI标准)

  这种接口是一种便于系统集成、降低成本和提高效率的接口标准,越来越多的设备将使用SCSI接口标准,因此,带SCSI接口的硬盘和SCSI光盘驱动器也很多,但由于成本问题,主要用于中高端服务器工作站上。


IDE硬盘

  除了SCSI,IDE也是一种极为常用的接口。从使用简便的角度来看,IDE更加适合普通用户,再加上个人电脑用户不但需要配置的外设不多,而且对速度要求也不高,因此选用IDE接口更合适些。此外,IDE还具有性能价格比高、适用面广等特点。而SCSI接口尽管具有很多无与伦比的特点,但不论从哪个角度看,该接口及其使用该接口的外设售价过于昂贵,一般用户实在无法承受,这也就决定了它的实际使用范围的局限性。

  1.IDE的工作方式需要CPU的全程参与,CPU读写数据的时候不能再进行其他操作,这种情况在Windows 95/NT的多任务操作系统中,自然就会导致系统反应的大大减慢。而SCSI接口,则完全通过独立的高速的SCSI卡来控制数据的读写操作,CPU就不必浪费时间进行等待,显然可以提高系统的整体性能。不过,现在的IDE接口为改善这个问题也做了很大改进,已经可以使用DMA模式而非PIO模式来读写,数据的交换由DMA通道负责,对CPU的占用可大大减小。尽管如此,比较SCSI和IDE在CPU的占用率,还是可以发现SCSI仍具有相当的优势。

  2.SCSI的扩充性比IDE大,一般每个IDE系统可有2个IDE通道,总共连4个IDE设备,而SCSI接口可连接7—15个设备,比IDE要多很多,而且连接的电缆也远长于IDE。

  3.虽然SCSI设备价格高些,与IDE相比,SCSI的性能更稳定、耐用,可靠性也更好。



SATA硬盘

IDE接口硬盘在当前电脑中应用最为广泛,主流的规格包括ATA/66、ATA/100、ATA/133,这种命名方式也表明了它们在理论上的外部最大传输速率分别达到了66MB/s、100MB/s和133MB/s。这里需要说明:100MB/s、133MB/s是峰值速度,并不能表示硬盘能持续这个速度,也就是说这是理论上的最高峰值速度。 

硬盘真正的传输速度由于受硬盘内部传输速率的影响,其稳定传输速率一般在30MB/s到45MB/s之间。这样随着CPU、内存等硬件运行速度的不断提高,ATA硬盘的低速率渐渐成为影响整机运行速度的瓶颈。于是,一种新的硬盘接口方式,Serial ATA应运而生。 

Serial ATA 硬盘就是我们常说的串口硬盘,它采用点对点的方式实现了数据的分组传输从而带来更高的传输效率。Serial ATA 1.0版本硬盘的起始传输速率就达到150MB/s,而Serial ATA 3.0版本将实现硬盘峰值数据传输率为600MB/s,从而最终解决硬盘的系统瓶颈问题。 


SCSI优点

  1.SCSI可支持多个设备,SCSI-2(FastSCSI)最多可接7个SCSI设备,WideSCSI-2以上可接16个SCSI设备。也就是说,所有的设备只需占用一个IRQ,同时SCSI还支持相当广的设备,如CD-ROM、DVD、CDR、硬盘、磁带机扫描仪等。

  2.SCSI还允许在对一个设备传输数据的同时,另一个设备对其进行数据查找。这就可以在多任务操作系统如Linux、WindowsNT中获得更高的性能。

  3.SCSI占用CPU极低,确实在多任务系统中占有着明显的优势。由于SCSI卡本身带有CPU,可处理一切SCSI设备的事务,在工作时主机CPU只要向SCSI卡发出工作指令,SCSI卡就会自己进行工作,工作结束后返回工作结果给CPU,在整个过程中,CPU均可以进行自身工作。

  4.SCSI设备还具有智能化,SCSI卡自己可对CPU指令进行排队,这样就提高了工作效率。在多任务时硬盘会在当前磁头位置,将邻近的任务先完成,再逐一进行处理。

  5.最快的SCSI总线有160MB/s的带宽,这要求使用一个64位的66MHz的PCI插槽,因此在PCI-X总线标准中所能达到的最大速度为80MB/s,若配合10,000rpm或15,000rpm转速的专用硬盘使用将带来明显的性能提升。

编辑本段终结器

  SCSI链的最后一个SCSI设备要用终结器,中间设备是不需要终结器的。一旦中间设备使用了终结器,那么SCSI卡就无法找到以后的SCSI设备了。而如果最后一个设备没用终结器,SCSI也是无法正常工作的。终结器是由电阻组成的,位于SCSI总线的末端,用来减小相互影响的信号,维持SCSI链上的电压恒定。

  绝大部分SCSI设备是内置终结器,并用一跳线来控制ON/OFF。现在的SCSI设备智能化程度很高,能自动控制终结器ON/OFF,如一块硬盘和一个CD-ROM相连,无论硬盘的终结器ON或OFF,CD-ROM都能正常使用。而当两块硬盘相连时,情况就变得复杂了,两块Seagate的硬盘相连前,一块硬盘终结器必须是OFF,而当一块Seagate的硬盘和一块Quantum硬盘相连前,一个硬盘终结器无论ON或OFF,都能正常使用。

编辑本段ID

  系统中的每个SCSI设备都必须有自己唯一的ID(标识号),这个号码从1~15。SCSIAdapter系统默认ID为7。这个ID可由位于设备前端的跳线器来设置。对于硬盘它位于驱动器的前端或后端。


iSCSI 简介

  
iSCSI:Internet
小型计算机系统接口 (iSCSI:Internet Small Computer System Interface)。

  Internet
小型计算机系统接口(iSCSI)是一种基于
TCP/IP的协议,用来建立和管理 IP 存储设备、主机和客户机等之间的相互连接,并创建存储区域网络SAN)。SAN
使得 SCSI 协议应用于高速数据传输网络成为可能,这种传输以
数据块级别(block-level)在多个数据存储网络间进行。

  SCSI 结构基于客户/服务器模式,其通常应用环境是:设备互相靠近,并且这些设备由
SCSI 总线连接。iSCSI 的主要功能是在 TCP/IP 网络上的
主机系统(启动器 initiator)和存储设备(目标器 target)之间进行大量数据的封装和可靠传输过程。此外,iSCSI
提供了在 IP 网络封装 SCSI 命令,且运行在 TCP 上。

  如今我们所涉及的 SAN (Storage Area Network),其实现数据通信的主要要求是:1. 数据存储系统的合并;2.
数据备份;3.
服务器群集;4. 复制;5. 紧急情况下的数据恢复。另外,SAN
可能分布在不同地理位置的多个 LANs 和 WANs 中。必须确保所有 SAN 操作安全进行并符合服务质量(QoS)要求,而 iSCSI 则被设计来在 TCP/IP 网络上实现以上这些要求。

  iSCSI(Internet SCSI)是2003年IETF(InternetEngineering Task Force,互联网工程任务组)制订的一项

bcm5722
ISCSI网卡

标准,用于将SCSI数据块映射成以太网数据包。SCSI(Small
Computer System Interface)是块数据传输协议,在存储行业广泛应用,是存储设备最基本的标准协议。从根本上说,iSCSI协议是一种利用IP网络来传输潜伏时间短的SCSI
数据块的方法,ISCSI使用以太网协议传送SCSI命令、响应和数据。ISCSI可以用我们已经熟悉和每天都在使用的以太网来构建IP存储局域网。通过这种方法,ISCSI克服了直接连接存储的局限性,使我们可以跨不同服务器共享存储资源,并可以在不停机状态下扩充存储容量。

  iSCSI的工作过程:当iSCSI主机应用程序发出数据读写请求后,操作系统会生成一个相应的SCSI命令,该SCSI命令在iSCSI
initiator层被
封装成ISCSI消息包并通过TCP/IP传送到设备侧,设备侧的iSCSI target层会解开iSCSI消息包,得到SCSI命令的内容,然后传送给SCSI设备执行;设备执行SCSI命令后的响应,在经过设备侧iSCSI
target层时被封装成ISCSI响应PDU,通过TCP/IP网络传送给主机的ISCSI initiator层,iSCSI initiator会从ISCSI响应PDU里解析出SCSI响应并传送给操作系统,操作系统再响应给应用程序。

  这几年来,iSCSI存储技术得到了快速发展。iSCSI的最大好处是能提供快速的网络环境,虽然目前其性能和带宽光纤网络还有一些差距,但能节省企业约30-40%的成本。iSCSI技术优点和成本优势的主要体现包括以下几个方面:

  硬件成本低:构建iSCSI存储网络,除了存储设备外,交换机、线缆、接口卡都是标准的以太网配件,价格相对来说比较低廉。同时,iSCSI还可以在现有的网络上直接安装,并不需要更改企业的网络体系,这样可以最大程度地节约投入。

  操作简单,维护方便:对iSCSI存储网络的管理,实际上就是对以太网设备的管理,只需花费少量的资金去培训iSCSI存储网络管理员。当iSCSI存储网络出现故障时,问题定位及解决也会因为以太网的普及而变得容易。

  扩充性强:对于已经构建的iSCSI存储网络来说,增加iSCSI存储设备和服务器都将变得简单且无需改变网络的体系结构

  带宽和性能:iSCSI存储网络的访问带宽依赖以太网带宽。随着千兆以太网的普及和万兆以太网的应用,iSCSI存储网络会达到甚至超过FC(FiberChannel,光纤通道)存储网络的带宽和性能。突破距离限制:iSCSI存储网络使用的是以太网,因而在服务器和存储设备的空间布局上的限制就会少了很多,甚至可以跨越地区和国家。

  在过去的一年,存储界最热门的技术就是iSCSI技术,各存储设备厂商都纷纷推出iSCSI设备(企业级别或家用级别),iSCSI存储设备的销量也在快速增长。

编辑本段性能

  iSCSI的一些新特性与IP协议的性质密切相关。FC协议适合于连接服务器和阵列的网络,基于IP协议的iSCSI


intel82575
ISCSI网卡

可能会与非存储IP流量竞争。为了减少IP流量混乱带来的影响,数据中心的管理员应该通过专用iSCSI网络分离iSCSI流量和非存储流量,因为专用iSCSI网络与网络其他部分没有物理连接,或者采用访问控制清单、虚拟局域网(VLAN)等以太网隔离技术。华盛顿
Spokane公共学校的高级网络管理员Kevin Mount说:“为了避免内部LAN产生干涉,我们决定在Foundry公司生产的48端口以太网交换机中独立运行iSCSI网络。”

  尽管物理隔离和虚拟隔离技术大大提高了安全和性能,存储管理员依然需要在网络交换机适配器中利用以太网巨帧和流量控制等先进技术,缓减阻塞,优化吞吐量。当一条千兆链路的网络带宽不够用时,可以利用以太网链路*(trunking)或链路汇集,将多条链路连接成一条*链路;这样就不必部署价格昂贵的10Gb以太网基础设施,又能克服网络带宽的限制。

  在主机方面,TCP卸载引擎(TOE)和iSCSI HBA可以有效节省CPU周期,尤其是对速度较慢但注重性能的应用程序服务器。SNIA
IP存储论坛主席David
Dale认为,尽管TCP和iSCSI的传输速率为1Gb/s,不足最先进服务器硬件速率的10%,而目前85%的iSCSI在部署过程中只采用
iSCSI Initiator
软件,但是一旦10Gb iSCSI 得到普及,TOE和iSCSI HBA的作用就会越来越大。除了改善I/O性能,iSCSI HBA还会增加从SAN启动和加密等服务。

  在多协议环境中,存储管理员需要注意以太网的特性,如以太网交换机和网络接口卡(NIC)之间的容错速度/方式会产生自适应问题,可能对
iSCSI网络的性能产生不利影响。Mount 说:“为了降低自适应问题发生的概率,我们对所有的
交换机服务器以太网端口设置不可更改的编码。”

编辑本段安全性

  iSCSI和FC采用不同的方法保证存储访问的安全,这可能是多协议存储架构师必须解决的最大问题。FC利用

抱歉!评论已关闭.