现在的位置: 首页 > 综合 > 正文

Linux I2C核心、总线与设备驱动

2013年02月17日 ⁄ 综合 ⁄ 共 13849字 ⁄ 字号 评论关闭

I2C总线仅仅使用SCLSDA两根信号线就实现了设备之间的数据交互,极大地简化对硬件资源和PCB板布线空间的占用。因此,I2C总线被非常广泛地应用在EEPROM、实时钟、小型LCD等设备与CPU的接口中。

Linux定义了系统的I2C驱动体系结构,在Linux系统中,I2C驱动由3部分组成,即I2C核心、I2C总线驱动和I2C设备驱动。这3部分相互协作,形成了非常通用、可适应性很强的I2C框架。


     
1节将对Linux I2C体系结构进行分析,讲明3个组成部分各自的功能及相互联系。

2节将对Linux I2C核心进行分析,解释i2c-core.c文件的功能和主要函数的实现。

34节将分别详细介绍I2C总线驱动和I2C设备驱动的编写方法,给出可供参考的设计模板。

56节将以第34节给出的设计模板为基础,讲解S3C2410
ARM
处理器I2C总线驱动及挂接在上的SAA7113H视频模拟/数字转换芯片设备驱动的编写方法。


一、 Linux I2C体系结构
Linux
I2C体系结构分为3个组成部分:
1、I2C
核心
I2C 
核心提供了 I2C总线驱动 和 设备驱动 的注册、注销方法,I2C通信方法上层的、与 具体适配器无关的代码 以及
探测设备、检测设备地址的上层代码等。

2、I2C
总线驱动
I2C
总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可由CPU控制,甚至直接集成在CPU内部。
I2C
总线驱动主要包含了I2C适配器数据结构i2c_adapterI2C适配器的algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数。
经由I2C总线驱动的代码,我们可以控制I2C适配器以主控方式产生开始位、停止位、读写周期,以及以从设备方式被读写、产生ACK等。
?  I2C
设备驱动
I2C
设备驱动是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。
I2C
设备驱动主要包含了数据结构i2c_driveri2c_client,我们需要根据具体设备实现其中的成员函数。

15.1 Linux I2C体系结构
Linux 2.6内核中,所有的I2C设备都被在sysfs文件系统中显示,存在于/sys/bus/i2c/目录,以适配器地址和芯片地址的形式列出,如:
$ tree /sys/bus/i2c/
/sys/bus/i2c/
|-- devices
|   |-- 0-0048 -> ../../../devices/legacy/i2c-0/0-0048
|   |-- 0-0049 -> ../../../devices/legacy/i2c-0/0-0049
|   |-- 0-004a -> ../../../devices/legacy/i2c-0/0-004a
|   |-- 0-004b -> ../../../devices/legacy/i2c-0/0-004b
|   |-- 0-004c -> ../../../devices/legacy/i2c-0/0-004c
|   |-- 0-004d -> ../../../devices/legacy/i2c-0/0-004d
|   |-- 0-004e -> ../../../devices/legacy/i2c-0/0-004e
|   `-- 0-004f -> ../../../devices/legacy/i2c-0/0-004f
`-- drivers
    |-- i2c_adapter
    `-- lm75
        |-- 0-0048 -> ../../../../devices/legacy/i2c-0/0-0048
        |-- 0-0049 -> ../../../../devices/legacy/i2c-0/0-0049
        |-- 0-004a -> ../../../../devices/legacy/i2c-0/0-004a
        |-- 0-004b -> ../../../../devices/legacy/i2c-0/0-004b
        |-- 0-004c -> ../../../../devices/legacy/i2c-0/0-004c
        |-- 0-004d -> ../../../../devices/legacy/i2c-0/0-004d
        |-- 0-004e -> ../../../../devices/legacy/i2c-0/0-004e
        `-- 0-004f -> ../../../../devices/legacy/i2c-0/0-004f
Linux内核源代码中的drivers目录下包含一个 i2c目录,而在i2c目录下又包含如下文件和文件夹:
?  i2c-core.c
这个文件实现了I2C核心的功能以及/proc/bus/i2c*接口。
?  i2c-dev.c
实现了I2C适配器设备文件的功能,每一个I2C适配器都被分配一个设备。通过适配器访问设备时的主设备号都为89,次设备号为0255。应用程序通过 “i2c-%d”
(i2c-0, i2c-1, ..., i2c-10, ...)
文件名并使用文件操作接口open()write()read()ioctl()close()等来访问这个设备。
i2c-dev.c
并没有针对特定的设备而设计,只是提供了通用的read()write()ioctl()等接口,应用层可以借用这些接口访问挂接在适配器上的I2C设备的存储空间或寄存器并控制I2C设备的工作方式。
?  chips
文件夹
这个目录中包含了一些特定的I2C设备驱动,如Dallas公司的DS1337实时钟芯片、EPSON公司的RTC8564实时钟芯片和I2C接口的EEPROM驱动等。
?  busses
文件夹
这个文件中包含了一些I2C总线的驱动,如S3C2410I2C控制器驱动为i2c-s3c2410.c
?  algos
文件夹
实现了一些I2C总线适配器的algorithm
此外,内核中的i2c.h这个头文件对i2c_driveri2c_clienti2c_adapteri2c_algorithm4个数据结构进行了定义。理解这4个结构体的作用十分关键,代码清单15.115.215.315.4分别给出了它们的定义。
代码清单15.1 i2c_adapter结构体
1  struct i2c_adapter {
2   struct module *owner;/*
所属模块*/
3  unsigned int id;   /*algorithm
的类型,定义于i2c-id.h,以I2C_ALGO_开始*/
4  unsigned int class;
5  struct i2c_algorithm *algo;/*
总线通信方法结构体指针 */
6  void *algo_data; /* algorithm
数据 */
7  int (*client_register)(struct i2c_client *);  /*client
注册时调用*/
8  int (*client_unregister)(struct i2c_client *); /*client
注销时调用*/
9  struct semaphore bus_lock;    /*
控制并发访问的自旋锁*/
10 struct semaphore clist_lock;
11 int timeout;
12 int retries;    /*
重试次数*/
13 struct device dev;  /* 
适配器设备 */
14 struct class_device class_dev; /* 
类设备 */
15 int nr;
16 struct list_head clients;  /* client
链表头*/
17 struct list_head list;
18 char name[I2C_NAME_SIZE];  /*
适配器名称*/
19 struct completion dev_released;    /*
用于同步*/
20 struct completion class_dev_released;
21};
代码清单15.2 i2c_algorithm结构体
1  struct i2c_algorithm {
2   int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs, 
3                      int num);  /*i2c
传输函数指针*/
4   int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,   /*smbus
传输函数指针*/
5                      unsigned short flags, char read_write,
6                      u8 command, int size, union i2c_smbus_data * data);
7   int (*slave_send)(struct i2c_adapter *,char*,int);/*
i2c适配器为slave时,发送函数*/
8   int (*slave_recv)(struct i2c_adapter *,char*,int); /*
i2c适配器为slave时,接收函数*/
9   int (*algo_control)(struct i2c_adapter *, unsigned int, unsigned long); /*
类似ioctl*/
10  u32 (*functionality) (struct i2c_adapter *);/*
返回适配器支持的功能*/
11 };
上述代码第4行对应为SMBus传输函数指针,SMBus大部分基于I2C总线规范,SMBus不需增加额外引脚。与I2C总线相比,SMBus增加了一些新的功能特性,在访问时序也有一定的差异。
代码清单15.3 i2c_driver结构体
1  struct i2c_driver {
2   int id;
3   unsigned int class;
4   int (*attach_adapter)(struct i2c_adapter *); /*
依附i2c_adapter函数指针 */
5   int (*detach_adapter)(struct i2c_adapter *); /*
脱离i2c_adapter函数指针*/
6   int (*detach_client)(struct i2c_client *);  /*i2c client
脱离函数指针*/
7   int (*command)(struct i2c_client *client,unsigned int cmd, void *arg); /*
类似ioctl*/
8   struct device_driver driver;    /*
设备驱动结构体*/
9   struct list_head list;         /*
链表头*/
10 };
代码清单15.4 i2c_client结构体
1  struct i2c_client {
2   unsigned int flags;  /* 
标志 */
3   unsigned short addr;     /* 
7位为芯片地址 */
4   struct i2c_adapter *adapter; /*
依附的i2c_adapter*/
5   struct i2c_driver *driver;    /*
依附的i2c_driver */
6   int usage_count;     /* 
访问计数  */
7   struct device dev;     /* 
设备结构体 */
8   struct list_head list;       /* 
链表头 */ 
9   char name[I2C_NAME_SIZE]; /* 
设备名称 */
10  struct completion released;   /* 
用于同步 */
11 };
下面分析一下i2c_driveri2c_clienti2c_adapteri2c_algorithm4个数据结构的作用及其盘根错节的关系。
?  i2c_adapter
i2c_algorithm
i2c_adapter 
对应于物理上的一个适配器,而i2c_algorithm对应一套通信方法。一个I2C适配器需要i2c_algorithm中提供的通信函数来控制适配器上产生特定的访问周期。缺少i2c_algorithmi2c_adapter什么也做不了,因此i2c_adapter中包含其使用的 i2c_algorithm的指针。
i2c_algorithm
中的关键函数master_xfer()用于产生I2C访问周期需要的信号,以i2c_msg(即I2C消息)为单位。i2c_msg结构体也非常关键,代码清单15.5给出了它的定义。
代码清单15.5 i2c_msg结构体
1 struct i2c_msg {
2  __u16 addr; /* 
设备地址*/
3   __u16 flags; /* 
标志 */ 
4   __u16 len;  /* 
消息长度*/
5   __u8 *buf;  /* 
消息数据*/
6 };
?  i2c_driver
i2c_client
i2c_driver
对应一套驱动方法,是纯粹的用于辅助作用的数据结构,它不对应于任何的物理实体。i2c_client对应于真实的物理设备,每个I2C设备都需要一个i2c_client来描述。i2c_client一般被包含在i2c字符设备的私有信息结构体中。
i2c_driver 
i2c_client发生关联的时刻在i2c_driverattach_adapter()函数被运行时。attach_adapter()会探测物理设备,当确定一个client存在时,把该client使用的i2c_client数据结构的adapter指针指向对应的i2c_adapterdriver指针指向该i2c_driver,并会调用i2c_adapterclient_register()函数。相反的过程发生在i2c_driver detach_client()函数被调用的时候。
?  i2c_adpater
i2c_client
i2c_adpater 
i2c_client的关系与I2C硬件体系中适配器和设备的关系一致,即i2c_client依附于i2c_adpater。由于一个适配器上可以连接多个I2C设备,所以一个i2c_adpater也可以被多个i2c_client依附,i2c_adpater中包括依附于它的i2c_client 的链表。
假设I2C总线适配器xxx上有两个使用相同驱动程序的yyy I2C设备,在打开该I2C总线的设备结点后相关数据结构之间的逻辑组织关系将如图15.2所示。


15.2 I2C驱动各数据结构关系

从上面的分析可知,虽然I2C硬件体系结构比较简单,但是I2C体系结构在Linux中的实现却相当复杂。当工程师拿到实际的电路板,面对复杂的 Linux
I2C
子系统,应该如何下手写驱动呢?究竟有哪些是需要亲自做的,哪些是内核已经提供的呢?理清这个问题非常有意义,可以使我们面对具体问题时迅速地抓住重点。
    
一方面,适配器驱动可能是Linux内核本身还不包含的。另一方面,挂接在适配器上的具体设备驱动可能也是Linux不存在的。即便上述设备驱动都存在于Linux内核中,其基于的平台也可能与我们的电路板不一样。因此,工程师要实现的主要工作将包括:
?  
提供I2C适配器的硬件驱动,探测、初始化I2C适配器(如申请I2CI/O地址和中断号)、驱动CPU控制的I2C适配器从硬件上产生各种信号以及处理I2C中断等。
?  
提供I2C适配器的algorithm,用具体适配器的xxx_xfer()函数填充i2c_algorithmmaster_xfer指针,并把i2c_algorithm指针赋值给i2c_adapteralgo指针。
?  
实现I2C设备驱动与i2c_driver接口,用具体设备yyyyyy_attach_adapter()函数指针、 yyy_detach_client()函数指针和yyy_command()函数指针的赋值给i2c_driverattach_adapter detach_adapterdetach_client指针。
?  
实现I2C设备驱动的文件操作接口,即实现具体设备yyyyyy_read()yyy_write()yyy_ioctl()函数等。
上述工作中12属于I2C总线驱动,34属于I2C设备驱动,做完这些工作,系统会增加两个内核模块。本章第34节将详细分析这些工作的实施方法,给出设计模板,而5~6节将给出两个具体的实例。
15.2 Linux I2C
核心
I2C
核心(drivers/i2c/i2c-core.c)中提供了一组不依赖于硬件平台的接口函数,这个文件一般不需要被工程师修改,但是理解其中的主要函数非常关键,因为I2C总线驱动和设备驱动之间依赖于I2C核心作为纽带。I2C核心中的主要函数包括:
?  
增加/删除i2c_adapter
int i2c_add_adapter(struct i2c_adapter *adap);
int i2c_del_adapter(struct i2c_adapter *adap);
?  
增加/删除i2c_driver
int i2c_register_driver(struct module *owner, struct i2c_driver *driver);
int i2c_del_driver(struct i2c_driver *driver);
inline int i2c_add_driver(struct i2c_driver *driver);
?  i2c_client
依附/脱离
int i2c_attach_client(struct i2c_client *client);
int i2c_detach_client(struct i2c_client *client);
当一个具体的client被侦测到并被关联的时候,设备和sysfs文件将被注册。相反地,在client被取消关联的时候,sysfs文件和设备也被注销,如代码清单15.6
代码清单15.6 I2C核心client attach/detach函数
1  int i2c_attach_client(struct i2c_client *client)
2  {
3    ...
4   device_register(&client->dev);
5   device_create_file(&client->dev, &dev_attr_client_name);
6   
7   return 0;
8  }
9  
10 int i2c_detach_client(struct i2c_client *client)
11 {
12   ...
13  device_remove_file(&client->dev, &dev_attr_client_name);
14  device_unregister(&client->dev);
15   ...
16 }
4i2c传输、发送和接收
int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num);
int i2c_master_send(struct i2c_client *client,const char *buf ,int count);
int i2c_master_recv(struct i2c_client *client, char *buf ,int count);
i2c_transfer ()
函数用于进行I2C适配器和I2C设备之间的一组消息交互,i2c_master_send()函数和i2c_master_recv()函数内部会调用i2c_transfer()函数分别完成一条写消息和一条读消息,如代码清单15.715.8
代码清单15.7 I2C核心i2c_master_send函数
1  int i2c_master_send(struct i2c_client *client,const char *buf ,int count)
2  {
3   int ret;
4   struct i2c_adapter *adap=client->adapter;
5   struct i2c_msg msg;
6    /*
构造一个写消息*/
7   msg.addr = client->addr;
8   msg.flags = client->flags & I2C_M_TEN;
9   msg.len = count;
10  msg.buf = (char *)buf;
11  /*
传输消息*/
12  ret = i2c_transfer(adap, &msg, 1);
13 
14  return (ret == 1) ? count : ret;
15 }
代码清单15.8 I2C核心i 2c_master_recv函数
1  int i2c_master_recv(struct i2c_client *client, char *buf ,int count)
2  {
3   struct i2c_adapter *adap=client->adapter;
4   struct i2c_msg msg;
5   int ret;
6   /*
构造一个读消息*/
7   msg.addr = client->addr;
8   msg.flags = client->flags & I2C_M_TEN;
9   msg.flags |= I2C_M_RD;
10  msg.len = count;
11  msg.buf = buf;
12  /*
传输消息*/
13  ret = i2c_transfer(adap, &msg, 1);
14 
15  /* 
成功(1条消息被处理), 返回读的字节数 */
16  return (ret == 1) ? count : ret;
17 }
i2c_transfer()
函数本身不具备驱动适配器物理硬件完成消息交互的能力,它只是寻找到i2c_adapter对应的i2c_algorithm,并使用i2c_algorithmmaster_xfer()函数真正驱动硬件流程,如代码清单15.9
代码清单15.9 I2C核心i 2c_transfer函数
1  int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)
2  {
3   int ret;
4  
5   if (adap->algo->master_xfer) {
6    down(&adap->bus_lock);
7    ret = adap->algo->master_xfer(adap,msgs,num); /* 
消息传输 */
8    up(&adap->bus_lock);
9    return ret;
10  } else {
11   dev_dbg(&adap->dev, "I2C level transfers not supported\n");
12   return -ENOSYS;
13  }
14 }
5I2C控制命令分派
下面函数有助于将发给I2C适配器设备文件ioctl的命令分派给对应适配器的algorithmalgo_control()函数或i2c_drivercommand()函数:
int i2c_control(struct i2c_client *client, unsigned int cmd, unsigned long arg);
void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg);
15.3 Linux I2C
总线驱动
15.3.1 I2C
适配器驱动加载与卸载
I2C
总线驱动模块的加载函数要完成两个工作:
?  
初始化I2C适配器所使用的硬件资源,申请I/O地址、中断号等。
?  
通过i2c_add_adapter()添加i2c_adapter的数据结构,当然这个i2c_adapter数据结构的成员已经被xxx适配器的相应函数指针所初始化。
I2C
总线驱动模块的卸载函数要完成的工作与加载函数的相反:
?  
释放I2C适配器所使用的硬件资源,释放I/O地址、中断号等。
?  
通过i2c_del_adapter()删除i2c_adapter的数据结构。
代码清单15.10给出了I2C适配器驱动模块加载和卸载函数的模板。
代码清单15.10 I2C总线驱动模块加载和卸载函数模板
1  static int __init i2c_adapter_xxx_init(void)
2  {
3    xxx_adpater_hw_init();
4    i2c_add_adapter(&xxx_adapter);
5  }
6  
7  static void __exit i2c_adapter_xxx_exit(void)
8  {
9    xxx_adpater_hw_free();
10   i2c_del_adapter(&xxx_adapter);
11 }
上述代码中xxx_adpater_hw_init()xxx_adpater_hw_free()函数的实现都与具体的CPUI2C设备硬件直接相关。
15.3.2 I2C
总线通信方法
我们需要为特定的I2C适配器实现其通信方法,主要实现i2c_algorithmmaster_xfer()函数和functionality()函数。
functionality ()
函数非常简单,用于返回algorithm所支持的通信协议,如I2C_FUNC_I2CI2C_FUNC_10BIT_ADDRI2C_FUNC_SMBUS_READ_BYTEI2C_FUNC_SMBUS_WRITE_BYTE等。
master_xfer()
函数在I2C适配器上完成传递给它的i2c_msg数组中的每个I2C消息,代码清单15.11给出了xxx设备的master_xfer()函数模板。
代码清单15.11 I2C总线驱动master_xfer函数模板
1  static int i2c_adapter_xxx_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2    int num)
3  {
4    ...
5    for (i = 0; i < num; i++)
6    {
7      i2c_adapter_xxx_start(); /*
产生开始位*/
8      /*
是读消息*/
9      if (msgs[i]->flags &I2C_M_RD)
10     {
11       i2c_adapter_xxx_setaddr((msg->addr << 1) | 1); /*
发送从设备读地址*/
12       i2c_adapter_xxx_wait_ack(); /*
获得从设备的ack*/
13       i2c_adapter_xxx_readbytes(msgs[i]->buf, msgs[i]->len); /*
读取msgs[i]
14         ->len
长的数据到msgs[i]->buf*/
15     }
16     else
17      /*
是写消息*/
18     {
19       i2c_adapter_xxx_setaddr(msg->addr << 1); /*
发送从设备写地址*/
20       i2c_adapter_xxx_wait_ack(); /*
获得从设备的ack*/
21       i2c_adapter_xxx_writebytes(msgs[i]->buf, msgs[i]->len); /*
读取msgs[i]
22         ->len
长的数据到msgs[i]->buf*/
23     }
24   }
25   i2c_adapter_xxx_stop(); /*
产生停止位*/
26 }
 述代码实际上给出了一个master_xfer()函数处理I2C消息数组的流程,对于数组中的每个消息,判断消息类型,若为读消息,则赋从设备地址为 (msg->addr
<< 1) | 1
,否则为msg->addr << 1。对每个消息产生1个开始位,紧接着传送从设备地址,然后开始数据的发送或接收,对最后的消息还需产生1个停止位。图15.3描述了整个master_xfer()完成的时序。


15.3 algorithmmaster_xfer的时序

master_xfer() 数模板中的i2c_adapter_xxx_start()i2c_adapter_xxx_setaddr()i2c_adapter_xxx_wait_ack()i2c_adapter_xxx_readbytes()i2c_adapter_xxx_writebytes()i2c_adapter_xxx_stop()函数用于完成适配器的底层硬件操作,与I2C 适配器和CPU的具体硬件直接相关,需要由工程师根据芯片的数据手册来实现。
i2c_adapter_xxx_readbytes()
用于从从设备上接收一串数据,i2c_adapter_xxx_writebytes()用于向从设备写入一串数据,这两个函数的内部也会涉及到I2C总线协议中的ACK应答。
master_xfer ()
函数的实现在形式上会很多样,即便是Linux内核源代码中已经给出的一些I2C总线驱动的master_xfer()函数,由于由不同的组织或个人 完成,风格上的差别也非常大,不一定能与模板完全对应,如master_xfer()函数模板给出的消息处理是顺序进行的,而有的驱动以中断方式来完成这 个流程(第5节的实例即是如此)。不管具体怎么实施,流程的本质都是不变的。因为这个流程不以驱动工程师的意志为转移,最终由I2C总线硬件上的通信协议 决定。
多数I2C总线驱动会定义一个xxx_i2c结构体,作为i2c_adapteralgo_data(类似私有数据),其中包含 I2C消息数组指针、数组索引及I2C适配器algorithm访问控制用的自旋锁、等待队列等,而master_xfer()函数完成消息数组中消息的 处理也可通过对xxx_i2c结构体相关成员的访问来控制。代码清单15.12给出了xxx_i2c结构体的定义,与图15.2中的xxx_i2c是对应 的。
代码清单15.12 xxx_i2c结构体模板
1  struct xxx_i2c 
2  {
3   spinlock_t  lock;
4   wait_queue_head_t wait;  
5   struct i2c_msg  *msg;
6   unsigned int  msg_num;
7   unsigned int  msg_idx;
8   unsigned int  msg_ptr;
9   ...
10  struct i2c_adapter adap;
11 };
15.4 Linux I2C
设备驱动
I2C 
设备驱动要使用i2c_driveri2c_client数据结构并填充其中的成员函数。i2c_client一般被包含在设备的私有信息结构体 yyy_data中,而i2c_driver则适宜被定义为全局变量并初始化,代码清单15.13显示了被初始化的i2c_driver
代码清单15.13 初始化的i2c_driver 
1  static struct i2c_driver yyy_driver =
2  {
3    .driver =
4    {
5      .name = "yyy",
6    } ,
7    .attach_adapter = yyy_attach_adapter,
8    .detach_client =  yyy_detach_client,
9    .command = yyy_command,
10 };
15.4.1 Linux I2C
设备驱动模块加载与卸载
I2C
设备驱动模块加载函数通用的方法是在I2C设备驱动模块加载函数中完成两件事:
?  
通过register_chrdev()函数将I2C设备注册为一个字符设备。
?  
通过I2C核心的i2c_add_driver()函数添加i2c_driver
在模块卸载函数中需要做相反的两件事:
?  
通过I2C核心的i2c_del_driver()函数删除i2c_driver
?  
通过unregister_chrdev()函数注销字符设备。
代码清单15.14给出了I2C设备驱动加载与卸载函数的模板。
代码清单15.14 I2C设备驱动模块加载与卸载函数模板
1  static int __init yyy_init(void)
2  {
3    int res;
4    /*
注册字符设备*/
5    res = register_chrdev(YYY_MAJOR, "yyy", &yyy_fops); //
老内核接口
6    if (res)
7      goto out;
8    /*
添加i2c_driver*/
9    res = i2c_add_driver(&yyy_driver);
10   if (res)
11     goto out_unreg_class;
12   return 0;
13 
14   out_unreg_chrdev: unregister_chrdev(I2C_MAJOR, "i2c");
15   out: printk(KERN_ERR "%s: Driver Initialisation failed\n", __FILE__);
16   return res;
17 }
18 
19 static void __exit yyy_exit(void)
20 {
21   i2c_del_driver(&i2cdev_driver);
22   unregister_chrdev(YYY_MAJOR, "yyy");
23 }
5行代码说明注册“yyy”这个字符设备时,使用的file_operations结构体为yyy_fops15.4.3节将讲解这个结构体中成员函数的实现。
15.4.2 Linux I2C
设备驱动i2c_driver

抱歉!评论已关闭.