现在的位置: 首页 > 综合 > 正文

最长递增子序列 LIS

2013年12月07日 ⁄ 综合 ⁄ 共 5101字 ⁄ 字号 评论关闭

对于这个问题,最直观的DP方法是cnt[i]表示以height[i]结束的最长递增子序列的元素的个数,递归方程是cnt[i]=max{height[j]<height[i],j<i|cnt[j]+1},这样做效率是O(n^2)。

换一个DP方法,以min_height[i]表示长度是i的递增子序列的第i个元素的最小高度。很明显min_height[i]是递增的,于是在搜索时可以用二分,这样总的效率可以做O(n*lgn)。详细的介绍见下面这篇转载来的文章。

 

什么是最长递增子序列呢?
问题描述如下:
   设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。
对于这个问题有以下几种解决思路:
   1、把a1,a2,...,an排序,假设得到a'1,a'2,...,a'n,然后求a的a'的最长公共子串,这样总的时间复杂度为o(nlg(n))+o(n^2)=o(n^2);
   2、动态规划的思路:
    另设一辅助数组b,定义b[n]表示以a[n]结尾的最长递增子序列的长度,则状态转移方程如下:b[k]=max(max(b[j]|a[j]<a[k],j<k)+1,1);
    这个状态转移方程解释如下:在a[k]前面找到满足a[j]<a[k]的最大b[j],然后把a[k]接在它的后面,可得到a[k]的最长递增子序列的长度,或者a[k]前面没有比它小的a[j],那么这时a[k]自成一序列,长度为1.最后整个数列的最长递增子序列即为max(b[k]   | 0<=k<=n-1);
    实现代码如下:
    

#include <iostream>

using namespace std;

int main()

{

       int i,j,n,a[100],b[100],max;

       while(cin>>n)

       {

              for(i=0;i<n;i++)

                     cin>>a[i];

              b[0]=1;//初始化,以a[0]结尾的最长递增子序列长度为1

              for(i=1;i<n;i++)

              {

                     b[i]=1;//b[i]最小值为1

                     for(j=0;j<i;j++)

                            if(a[i]>a[j]&&b[j]+1>b[i])

                                   b[i]=b[j]+1;

              }

              for(max=i=0;i<n;i++)//求出整个数列的最长递增子序列的长度

                     if(b[i]>max)

                            max=b[i];

              cout<<max<<endl;

       }

       return 0;

}

    显然,这种方法的时间复杂度仍为o(n^2);
   3、对第二种思路的改进:
    第二种思路在状态转移时的复杂度为o(n),即在找a[k]前面满足a[j]<a[k]的最大b[j]时采用的是顺序查找的方法,复杂度为o(n).
    设想如果能把顺序查找改为折半查找,则状态转移时的复杂度为o(lg(n)),这个问题的总的复杂度就可以降到nlg(n).
    另定义一数组c,c中元素满足c[b[k]]=a[k],解释一下,即当递增子序列的长度为b[k]时子序列的末尾元素为c[b[k]]=a[k].
    先给出这种思路的代码,然后再对其做出解释。
    

#include <iostream>

using namespace std;

int find(int *a,int len,int n)//若返回值为x,a[x]>=n>a[x-1]

{

       int left=0,right=len,mid=(left+right)/2;

       while(left<=right)

       {

              if(n>a[mid]) left=mid+1;

              else if(n<a[mid]) right=mid-1;

              else return mid;

              mid=(left+right)/2;

       }

       return left;

}

void fill(int *a,int n)

{

       for(int i=0;i<=n;i++)

              a[i]=1000;

}

int main()

{

       int max,i,j,n,a[100],b[100],c[100];

       while(cin>>n)

       {

              fill(c,n+1);

              for(i=0;i<n;i++)

                     cin>>a[i];

              c[0]=-1;//    …………………………………………1

              c[1]=a[0];//        ……………………………………2

              b[0]=1;//     …………………………………………3

              for(i=1;i<n;i++)//        ………………………………4

              {

                     j=find(c,n+1,a[i]);//   ……………………5

                     c[j]=a[i];// ………………………………6

                     b[i]=j;//……………………………………7

              }

              for(max=i=0;i<n;i++)//………………………………8

                     if(b[i]>max)

                            max=b[i];

              cout<<max<<endl;

       }

       return 0;

}

    对于这段程序,我们可以用算法导论上的loop invariants来帮助理解.
    loop invariant: 1、每次循环结束后c都是单调递增的。(这一性质决定了可以用二分查找)
                           2、每次循环后,c[i]总是保存长度为i的递增子序列的最末的元素,若长度为i的递增子序

                                  列有多个,刚保存末尾元素最小的那个.(这一性质决定是第3条性质成立的前提)
                           3、每次循环完后,b[i]总是保存以a[i]结尾的最长递增子序列。
    initialization:    1、进入循环之前,c[0]=-1,c[1]=a[0],c的其他元素均为1000,c是单调递增的;
                           2、进入循环之前,c[1]=a[0],保存了长度为1时的递增序列的最末的元素,且此时长度为1

                                 的递增了序列只有一个,c[1]也是最小的;
                           3、进入循环之前,b[0]=1,此时以a[0]结尾的最长递增子序列的长度为1.
    maintenance:   1、若在第n次循环之前c是单调递增的,则第n次循环时,c的值只在第6行发生变化,而由

                                c进入循环前单调递增及find函数的性质可知(见find的注释),

                                 此时c[j+1]>c[j]>=a[i]>c[j-1],所以把c[j]的值更新为a[i]后,c[j+1]>c[j]>c[j-1]的性质仍然成

                                立,即c仍然是单调递增的;
                           2、循环中,c的值只在第6行发生变化,由c[j]>=a[i]可知,c[j]更新为a[i]后,c[j]的值只会变

                                  小不会变大,因为进入循环前c[j]的值是最小的,则循环中把c[j]更新为更小的a[i],当

                                 然此时c[j]的值仍是最小的;
                           3、循环中,b[i]的值在第7行发生了变化,因为有loop invariant的性质2,find函数返回值

                                为j有:c[j-1]<a[i]<=c[j],这说明c[j-1]是小于a[i]的,且以c[j-1]结尾的递增子序列有最大的

                               长度,即为j-1,把a[i]接在c[j-1]后可得到以a[i]结尾的最长递增子序列,长度为(j-1)+1=j;
    termination:       循环完后,i=n-1,b[0],b[1],...,b[n-1]的值均已求出,即以a[0],a[1],...,a[n-1]结尾的最长递

                              增子序列的长度均已求出,再通过第8行的循环,即求出了整个数组的最长递增子序列。

          仔细分析上面的代码可以发现,每次循环结束后,假设已经求出c[1],c[2],c[3],...,c[len]的值,则此时最长递增子序列的长度为len,因此可以把上面的代码更加简化,即可以不需要数组b来辅助存储,第8行的循环也可以省略。
    

#include <iostream>

using namespace std;

int find(int *a,int len,int n)//修改后的二分查找,若返回值为x,则a[x]>=n

{

       int left=0,right=len,mid=(left+right)/2;

       while(left<=right)

       {

              if(n>a[mid]) left=mid+1;

              else if(n<a[mid]) right=mid-1;

              else return mid;

              mid=(left+right)/2;

       }

       return left;

}

int main()

{

       int n,a[100],c[100],i,j,len;//新开一变量len,用来储存每次循环结束后c中已经求出值的元素的最大下标

       while(cin>>n)

       {

              for(i=0;i<n;i++)

                     cin>>a[i];

              c[0]=-1;

              c[1]=a[0];

              len=1;//此时只有c[1]求出来,最长递增子序列的长度为1.

              for(i=1;i<n;i++)

              {

                     j=find(c,len,a[i]);

                     c[j]=a[i];

                     if(j>len)//要更新len,另外补充一点:由二分查找可知j只可能比len1

                            len=j;//更新len

              }

              cout<<len<<endl;

       }

       return 0;

}

抱歉!评论已关闭.