现在的位置: 首页 > 综合 > 正文

如何学习linux设备驱动

2013年12月10日 ⁄ 综合 ⁄ 共 4346字 ⁄ 字号 评论关闭

作者:于连庆,华清远见嵌入式培训中心讲师。

Linux系统目前主要维护2.4和2.6两个内核版本,在http://www.kernel.org/ 网站上已经可以下载到最新的2.6内核linux-2.6.38.6,及最新的2.4内核linux-2.4.37.11。稳定版本号基本上是1~3月更新一次,如:2.6.35至2.6.36,升级版本号每1~2周更新一次,如:2.6.35.1至2.6.35.2。 升级后的高版本内核并不完全兼容低版本内核,所以内核升级对于从事linux开发的技术人员来说影响很大,特别是对于那些刚刚从事linux开发的人员。

通常,内核的升级对从事linux应用程序开发的人员来说影响较小,因为系统调用基本保持兼容,影响比较大的是驱动开发人员。每次内核的更新都可能导致许多内核函数原型上的变化,其中既有内核本身提供的函数,也有硬件平台代码提供的函数,后者变化的更加频繁。这一点从许多经典书籍就可验证,当你按照手里的经典著作,如:Alessandro的《linux设备驱动程序》,编写驱动时,发现并不能够成功的在你的linux平台上编译通过、或不能正常执行,原因就在于你用的内核和书里的不一致。

本文从两个方面去解释这个问题,一方面是如何写好linux设备驱动,另一方面是如何应对不断升级的内核。

如何写好Linux设备驱动

Linux设备驱动是linux内核的一部分,是用来屏蔽硬件细节,为上层提供标准接口的一种技术手段。为了能够编写出质量比较高的驱动程序,要求工程师必须具备以下几个方面的知识:

●    熟悉处理器的性能

如:处理器的体系结构、汇编语言、工作模式、异常处理等。对于初学者来说,在还不熟悉驱动编写方法的情况下,可以先不把重心放在这一项上,因为可能因为它的枯燥、抽象而影响到你对设备驱动的兴趣。随着你不断地熟悉驱动的编写,你会很自然的意识到此项的重要性。

●    掌握驱动目标的硬件工作原理及通讯协议

如:串口控制器、显卡控制器、硬件编解码、存储卡控制器、I2C通讯、SPI通讯、USB通讯、SDIO通讯、I2S通讯、PCI通讯等。编写设备驱动的前提就是需要了解设备的操作方法,所以这些内容的重要程度不言而喻。但不是说要把所有设备的操作方法都熟悉了以后才可以写驱动,你只需要了解你要驱动的硬件就可以了。

●    掌握硬件的控制方法

如:中断、轮询、DMA 等,通常一个硬件控制器会有多种控制方法,你需要根据系统性能的需要合理的选择操作方法。初学阶段以实现功能为目的,掌握的顺序应该是,轮询->中断->DMA。随着学习的深入,需要综合考虑系统的性能需求,采取合适的方法。

●    良好的GNU C语言编程基础

如:C语言的指针、结构体、内存操作、链表、队列、栈、C和汇编混合编程等。这些编程语法是编写设备驱动的基础,无论对于初学者还是有经验者都非常重要。

●    良好的linux操作系统概念

如:多进程、多线程、进程调度、进程抢占、进程上下文、虚拟内存、原子操作、阻塞、睡眠、同步等概念及它们之间的关系。这些概念及方法在设备驱动里的使用是linux设备驱动区别单片机编程的最大特点,只有理解了它们才会编写出高质量的驱动。

●    掌握linux内核中设备驱动的编写接口

如:字符设备的cdev、块设备的gendisk、网络设备的net_device,以及基于这些基本接口的framebuffer设备的fb_info、mtd设备的mtd_info、tty设备的tty_driver、usb设备的usb_driver、mmc设备的mmc_host等。

Linux内核为设备驱动编写者提供了标准的接口,驱动编写者无需精通内核的各个部分,只需要明确内核提供给我们的接口,并实现此接口就可以了。内核提供的接口采用的是面向对象的思路,即把目标设备抽象成一个对象,通常利用一个结构体来描述这个对象。驱动工程师的任务就是实现这个对象。这个结构体中会包含设备的属性(用变量表示)和操作方法(用函数指针表示)。如:字符设备的cdev

struct cdev {
                struct kobject        kobj;
                struct module        *owner;
                const struct file_operations         *ops;        // 操作方法结合,其它项都是属性
                struct list_head        list;
                dev_t                        dev;
                unsigned int        count;
        };

开始阶段可以以模仿为主,即套用一些固定的模板、参考例程。

如何应对不断升级的内核

内核升级对驱动的影响主要体现在,(1)驱动接口定义的变化;(2)内核的一些功能函数的名称、参数、头文件、宏定义的变化;(3)平台代码关于硬件操作方面封装的一些函数的变化;(4)设备模型的影响。

●    驱动接口定义的变化

如:2.4内核中字符设备驱动的注册接口是:

int register_chrdev(unsigned int major, const char * name, struct file_operations *fops)

而2.6内核中已经不建议使用这种方法了,改为:

int cdev_add(struct cdev *p, dev_t dev, unsigned count)

这种接口定义及注册方法带来的变化,发生的并不频繁。解决方案是:参考内核中的代码。这种接口定义及注册方法在内核中非常容易找到,如:字符设备驱动的注册方法及接口定义可以参照内核driver/char/目录下的很多实例。

●    内核的一些功能函数的名称、参数、头文件、宏定义的变化

如:中断注册函数的格式及参数在2.4内核、2.6内核低版本和高版本之间都存在差别,在2.6.8中,中断注册函数的定义为:

int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),unsigned long irq_flags, const char * devname, void *dev_id)

irq_flags的取值主要为下面的某一种或组合: SA_INTERRUPT、SA_SAMPLE_RANDOM、SA_SHIRQ

在2.6.26中,中断注册函数的定义为:

int request_irq(unsigned int irq, irq_handler_t handler,unsigned long irqflags, const char *devname, void *dev_id)

typedef irqreturn_t (*irq_handler_t)(int, void *); irq_flags的取值主要为下面的某一种或组合:(功能和2.6.8的对应)IRQF_DISABLED、IRQF_SAMPLE_RANDOM、IRQF_SHARED

当出现这些问题时,编译过程中,编译器会给我们比较明确的错误提示,根据这些提示你可以判断出是否是缺少头文件问题、是否是函数参数定义有误等。解决问题的最好办法还是到你的目标内核中找信息。此时找问题的方法可以借助于搜索,如:你可以在新的内核中搜索request_irq,看新内核中的驱动是如何使用它的,这种方法非常有效。

●    平台代码关于硬件操作方面封装的一些函数的变化

内核中,硬件平台相关的代码在内核更新过程中变化比较频繁,和我们的设备驱动也是息息相关,所以在针对一个新内核编写设备驱动前,一定要熟悉你的平台代码的结构。有时平台虽然提供了内核要求的接口函数,但使用起来功能却并不完善。下面还是先举个例子说明平台代码更新对设备驱动的影响。

如:在linux-2.6.8内核中,调用set_irq_type(IRQ_EINT0,IRQT_FALLING);去设置S3C2410的IRQ_EINT0的中断触发信号类型,你会发现不会有什么效果。跟踪代码发现内核的set_irq_type函数需要平台提供一个针对硬件平台的实现函数

static struct irqchip s3c_irqext_chip = {
                .mask = s3c_irqext_mask,
                .unmask = s3c_irqext_unmask,
                .ack = s3c_irqext_ack,
                .type = s3c_irqext_type
        };

s3c_irqext_type就是linux内核需要的实现函数,而s3c_irqext_type在2.6.8中的实现为: static int s3c_irqext_type(unsigned int irq, unsigned int type)
        {
                irqdbf("s3c_irqext_type: called for irq %d, type %d/n", irq, type);
                return 0;
        }

原来并没有实现。而在较高版本的内核,如2.6.26内核中,这个函数是实现了的。所以你一定要小心。当平台函数不好用时,一定要查查原因,或者直接操作硬件寄存器来达到目的。

●    2.6内核设备模型对驱动的影响

在2.6内核中写设备驱动和在2.4内核中有着很大的不同,主要就是在设备驱动中融入了比设备驱动本身结构还复杂、还难以理解的设备模型。初学驱动时你可以不理会设备模型,但你会发现内核里的驱动代码基本上都是融入了设备模型的了。所以很多时候你不得不面对现实,还是要弄懂它,并且它也的注册方法也会随着内核的升级而发生变化。解决此类问题的最好方法还是参考目标内核驱动代码。

总结:

开始学习设备驱动时,选择一个当前比较流行的内核版本和硬件平台,不急于追赶最新潮流。这样你可以找到的网络资源会比较多,不至于有孤军奋战的感觉。我想这个过程应该不低于1年。当过了这个过程后,尝试将你编写过的驱动移植到各个目标平台上。

(本文参考了一些网上资料,因原出处不详,特向资料的原作者致谢!)

【上篇】
【下篇】

抱歉!评论已关闭.