现在的位置: 首页 > 综合 > 正文

Windows下的Win32串口编程

2017年12月07日 ⁄ 综合 ⁄ 共 17757字 ⁄ 字号 评论关闭
在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。
一般情况下,工控机和各智能仪表通过RS485总线进行通信。RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。
  在Win32下,可以使用两种编程方式实现串口通信,其一是使用ActiveX控件,这种方法程序简单,但欠灵活。其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活。本文我们只介绍API串口通信部分。
  串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式)。同步操作时,API函数会阻塞直到操作完成以后才能返回(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞。

无论那种操作方式,一般都通过四个步骤来完成:
(1) 打开串口
(2) 配置串口
(3) 读写串口
(4) 关闭串口

(1) 打开串口

  Win32系统把文件的概念进行了扩展。无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的。该函数的原型为:

HANDLE CreateFile( LPCTSTR lpFileName,
                        DWORD dwDesiredAccess,
                        DWORD dwShareMode,
                        LPSECURITY_ATTRIBUTES lpSecurityAttributes,
                        DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile);
  • lpFileName:将要打开的串口逻辑名,如“COM1”;
  • dwDesiredAccess:指定串口访问的类型,可以是读取、写入或二者并列;
  • dwShareMode:指定共享属性,由于串口不能共享,该参数必须置为0;
  • lpSecurityAttributes:引用安全性属性结构,缺省值为NULL;
  • dwCreationDistribution:创建标志,对串口操作该参数必须置为OPEN_EXISTING;
  • dwFlagsAndAttributes:属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O;该值为0,表示同步I/O操作;
  • hTemplateFile:对串口而言该参数必须置为NULL;

同步I/O方式打开串口的示例代码:

HANDLE hCom;        //全局变量,串口句柄
 hCom=CreateFile("COM1",//COM1口
       GENERIC_READ|GENERIC_WRITE, //允许读和写
       0, //独占方式
       NULL,
       OPEN_EXISTING, //打开而不是创建
       0, //同步方式
       NULL);
 if(hCom==(HANDLE)-1)
 {
       AfxMessageBox("打开COM失败!");
       return FALSE;
 }
 return TRUE;

重叠I/O打开串口的示例代码:

HANDLE hCom;        //全局变量,串口句柄
 hCom =CreateFile("COM1",        //COM1口
                   GENERIC_READ|GENERIC_WRITE, //允许读和写
                   0,        //独占方式
                   NULL,
                   OPEN_EXISTING,        //打开而不是创建
                   FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
                   NULL);
 if(hCom ==INVALID_HANDLE_VALUE)
 {
       AfxMessageBox("打开COM失败!");
       return FALSE;
 }
          return TRUE;

(2)、配置串口

  在打开通讯设备句柄后,常常需要对串口进行一些初始化配置工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、数据位数、奇偶校验和停止位数等信息。在查询或配置串口的属性时,都要用DCB结构来作为缓冲区。
  一般用CreateFile打开串口后,可以调用GetCommState函数来获取串口的初始配置。要修改串口的配置,应该先修改DCB结构,然后再调用SetCommState函数设置串口。
  DCB结构包含了串口的各项参数设置,下面仅介绍几个该结构常用的变量:

typedef struct _DCB{
         ………
         //波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一:
         DWORD BaudRate; 
CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400, 
CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400

DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查 
         …
BYTE ByteSize; // 通信字节位数,4—8
BYTE Parity; //指定奇偶校验方法。此成员可以有下列值:
EVENPARITY 偶校验           NOPARITY 无校验
MARKPARITY 标记校验         ODDPARITY 奇校验
BYTE StopBits; //指定停止位的位数。此成员可以有下列值:
ONESTOPBIT 1位停止位         TWOSTOPBITS 2位停止位
ONE5STOPBITS         1.5位停止位
         ………
        } DCB;
winbase.h文件中定义了以上用到的常量。如下:
#define NOPARITY                  0
#define ODDPARITY                 1
#define EVENPARITY                2
#define ONESTOPBIT                0
#define ONE5STOPBITS              1
#define TWOSTOPBITS               2
#define CBR_110                   110
#define CBR_300                   300
#define CBR_600                   600
#define CBR_1200                  1200
#define CBR_2400                  2400
#define CBR_4800                  4800
#define CBR_9600                  9600
#define CBR_14400                 14400
#define CBR_19200                 19200
#define CBR_38400                 38400
#define CBR_56000                 56000
#define CBR_57600                 57600
#define CBR_115200                115200
#define CBR_128000                128000
#define CBR_256000                256000

GetCommState函数可以获得COM口的设备控制块,从而获得相关参数:

BOOL GetCommState(
         HANDLE hFile, //标识通讯端口的句柄
         LPDCB lpDCB //指向一个设备控制块(DCB结构)的指针
        );
SetCommState函数设置COM口的设备控制块:
BOOL SetCommState(
         HANDLE hFile, 
         LPDCB lpDCB 
        );

  除了在BCD中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。

BOOL SetupComm(

          HANDLE hFile, // 通信设备的句柄 
          DWORD dwInQueue, // 输入缓冲区的大小(字节数) 
          DWORD dwOutQueue // 输出缓冲区的大小(字节数)
         );

  在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。超时的作用是在指定的时间内没有读入或发送指定数量的字符,ReadFile或WriteFile的操作仍然会结束。
  要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。
  读写串口的超时有两种:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延。总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读写操作的超时。
COMMTIMEOUTS结构的定义为:

typedef struct _COMMTIMEOUTS {         
          DWORD ReadIntervalTimeout; //读间隔超时
          DWORD ReadTotalTimeoutMultiplier; //读时间系数
          DWORD ReadTotalTimeoutConstant; //读时间常量
          DWORD WriteTotalTimeoutMultiplier; // 写时间系数
          DWORD WriteTotalTimeoutConstant; //写时间常量
} COMMTIMEOUTS,*LPCOMMTIMEOUTS;

COMMTIMEOUTS结构的成员都以毫秒为单位。总超时的计算公式是:
总超时=时间系数×要求读/写的字符数+时间常量
例如,要读入10个字符,那么读操作的总超时的计算公式为:
读总超时=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant
可以看出:间隔超时和总超时的设置是不相关的,这可以方便通信程序灵活地设置各种超时。

如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。
  在用重叠方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。
配置串口的示例代码:

SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024

 COMMTIMEOUTS TimeOuts;
 //设定读超时
 TimeOuts.ReadIntervalTimeout=1000;
 TimeOuts.ReadTotalTimeoutMultiplier=500;
 TimeOuts.ReadTotalTimeoutConstant=5000;
 //设定写超时
 TimeOuts.WriteTotalTimeoutMultiplier=500;
 TimeOuts.WriteTotalTimeoutConstant=2000;
 SetCommTimeouts(hCom,&TimeOuts); //设置超时

 DCB dcb;
 GetCommState(hCom,&dcb);
 dcb.BaudRate=9600; //波特率为9600
 dcb.ByteSize=8; //每个字节有8位
 dcb.Parity=NOPARITY; //无奇偶校验位
 dcb.StopBits=TWOSTOPBITS; //两个停止位
 SetCommState(hCom,&dcb);

 PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:

BOOL PurgeComm(

          HANDLE hFile, //串口句柄
          DWORD dwFlags // 需要完成的操作
         );

参数dwFlags指定要完成的操作,可以是下列值的组合:

PURGE_TXABORT         中断所有写操作并立即返回,即使写操作还没有完成。
PURGE_RXABORT         中断所有读操作并立即返回,即使读操作还没有完成。
PURGE_TXCLEAR         清除输出缓冲区
PURGE_RXCLEAR         清除输入缓冲区

(3)、读写串口

我们使用ReadFile和WriteFile读写串口,下面是两个函数的声明:

BOOL ReadFile(

          HANDLE hFile, //串口的句柄
          
          // 读入的数据存储的地址,
          // 即读入的数据将存储在以该指针的值为首地址的一片内存区
          LPVOID lpBuffer, 
          DWORD nNumberOfBytesToRead, // 要读入的数据的字节数
          
          // 指向一个DWORD数值,该数值返回读操作实际读入的字节数
          LPDWORD lpNumberOfBytesRead, 
          
          // 重叠操作时,该参数指向一个OVERLAPPED结构,同步操作时,该参数为NULL。
          LPOVERLAPPED lpOverlapped       
         ); 
BOOL WriteFile(

          HANDLE hFile, //串口的句柄
          
          // 写入的数据存储的地址,
          // 即以该指针的值为首地址的nNumberOfBytesToWrite
          // 个字节的数据将要写入串口的发送数据缓冲区。
          LPCVOID lpBuffer, 
          
          DWORD nNumberOfBytesToWrite, //要写入的数据的字节数
          
          // 指向指向一个DWORD数值,该数值返回实际写入的字节数
          LPDWORD lpNumberOfBytesWritten, 
          
          // 重叠操作时,该参数指向一个OVERLAPPED结构,
          // 同步操作时,该参数为NULL。
          LPOVERLAPPED lpOverlapped       
         );

  在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。
  ReadFile和WriteFile函数是同步还是异步由CreateFile函数决定,如果在调用CreateFile创建句柄时指定了FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的操作就应该是重叠的;如果未指定重叠标志,则读写操作应该是同步的。ReadFile和WriteFile函数的同步或者异步应该和CreateFile函数相一致。
  ReadFile函数只要在串口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲区,而且要等这些字符从串行口送出去后才算完成操作。
  如果操作成功,这两个函数都返回TRUE。需要注意的是,当ReadFile和WriteFile返回FALSE时,不一定就是操作失败,线程应该调用GetLastError函数分析返回的结果。例如,在重叠操作时如果操作还未完成函数就返回,那么函数就返回FALSE,而且GetLastError函数返回ERROR_IO_PENDING。这说明重叠操作还未完成。

同步方式读写串口比较简单,下面先例举同步方式读写串口的代码:

//同步读串口
char str[100];
DWORD wCount;//读取的字节数
BOOL bReadStat;
bReadStat=ReadFile(hCom,str,100,&wCount,NULL);
if(!bReadStat)
{
 AfxMessageBox("读串口失败!");
 return FALSE;
}
return TRUE;

//同步写串口

 char lpOutBuffer[100];
 DWORD dwBytesWrite=100;
 COMSTAT ComStat;
 DWORD dwErrorFlags;
 BOOL bWriteStat;
 ClearCommError(hCom,&dwErrorFlags,&ComStat);
 bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);
 if(!bWriteStat)
 {
       AfxMessageBox("写串口失败!");
 }
 PurgeComm(hCom, PURGE_TXABORT|
       PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

在重叠操作时,操作还未完成函数就返回。

  重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。有两种方法可以等待操作完成:一种方法是用象WaitForSingleObject这样的等待函数来等待OVERLAPPED结构的hEvent成员;另一种方法是调用GetOverlappedResult函数等待,后面将演示说明。
下面我们先简单说一下OVERLAPPED结构和GetOverlappedResult函数:
OVERLAPPED结构
OVERLAPPED结构包含了重叠I/O的一些信息,定义如下:

typedef struct _OVERLAPPED { // o        
          DWORD        Internal; 
          DWORD        InternalHigh; 
          DWORD        Offset; 
          DWORD        OffsetHigh; 
          HANDLE hEvent; 
} OVERLAPPED;

  在使用ReadFile和WriteFile重叠操作时,线程需要创建OVERLAPPED结构以供这两个函数使用。线程通过OVERLAPPED结构获得当前的操作状态,该结构最重要的成员是hEvent。hEvent是读写事件。当串口使用异步通讯时,函数返回时操作可能还没有完成,程序可以通过检查该事件得知是否读写完毕。
  当调用ReadFile, WriteFile 函数的时候,该成员会自动被置为无信号状态;当重叠操作完成后,该成员变量会自动被置为有信号状态。

GetOverlappedResult函数
BOOL GetOverlappedResult(
          HANDLE hFile, // 串口的句柄        
          
          // 指向重叠操作开始时指定的OVERLAPPED结构
          LPOVERLAPPED lpOverlapped, 
          
          // 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。
          LPDWORD lpNumberOfBytesTransferred, 
          
          // 该参数用于指定函数是否一直等到重叠操作结束。
          // 如果该参数为TRUE,函数直到操作结束才返回。
          // 如果该参数为FALSE,函数直接返回,这时如果操作没有完成,
          // 通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。
          BOOL bWait       
         );

该函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。

异步读串口的示例代码:

char lpInBuffer[1024];
DWORD dwBytesRead=1024;
COMSTAT ComStat;
DWORD dwErrorFlags;
OVERLAPPED m_osRead;
memset(&m_osRead,0,sizeof(OVERLAPPED));
m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

ClearCommError(hCom,&dwErrorFlags,&ComStat);
dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
if(!dwBytesRead)
return FALSE;
BOOL bReadStatus;
bReadStatus=ReadFile(hCom,lpInBuffer,
           dwBytesRead,&dwBytesRead,&m_osRead);

if(!bReadStatus) //如果ReadFile函数返回FALSE
{
 if(GetLastError()==ERROR_IO_PENDING)
 //GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作 
 {
       WaitForSingleObject(m_osRead.hEvent,2000);
       //使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
       //当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
       PurgeComm(hCom, PURGE_TXABORT|
        PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
       return dwBytesRead;
 }
 return 0;
}
PurgeComm(hCom, PURGE_TXABORT|
          PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;

  对以上代码再作简要说明:在使用ReadFile 函数进行读操作前,应先使用ClearCommError函数清除错误。ClearCommError函数的原型如下:

BOOL ClearCommError(

          HANDLE hFile, // 串口句柄
          LPDWORD lpErrors, // 指向接收错误码的变量
          LPCOMSTAT lpStat // 指向通讯状态缓冲区
         );

该函数获得通信错误并报告串口的当前状态,同时,该函数清除串口的错误标志以便继续输入、输出操作。
参数lpStat指向一个COMSTAT结构,该结构返回串口状态信息。 COMSTAT结构 COMSTAT结构包含串口的信息,结构定义如下:

typedef struct _COMSTAT { // cst        
          DWORD fCtsHold : 1;         // Tx waiting for CTS signal 
          DWORD fDsrHold : 1;         // Tx waiting for DSR signal 
          DWORD fRlsdHold : 1;        // Tx waiting for RLSD signal 
          DWORD fXoffHold : 1;        // Tx waiting, XOFF char rec''d 
          DWORD fXoffSent : 1;        // Tx waiting, XOFF char sent 
          DWORD fEof : 1;             // EOF character sent 
          DWORD fTxim : 1;            // character waiting for Tx 
          DWORD fReserved : 25; // reserved 
          DWORD cbInQue;              // bytes in input buffer 
          DWORD cbOutQue;             // bytes in output buffer 
} COMSTAT, *LPCOMSTAT;

本文只用到了cbInQue成员变量,该成员变量的值代表输入缓冲区的字节数。

  最后用PurgeComm函数清空串口的输入输出缓冲区。

  这段代码用WaitForSingleObject函数来等待OVERLAPPED结构的hEvent成员,下面我们再演示一段调用GetOverlappedResult函数等待的异步读串口示例代码:

char lpInBuffer[1024];
DWORD dwBytesRead=1024;
 BOOL bReadStatus;
 DWORD dwErrorFlags;
 COMSTAT ComStat;
OVERLAPPED m_osRead;

 ClearCommError(hCom,&dwErrorFlags,&ComStat);
 if(!ComStat.cbInQue)
       return 0;
 dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
 bReadStatus=ReadFile(hCom, lpInBuffer,dwBytesRead,
       &dwBytesRead,&m_osRead);
 if(!bReadStatus) //如果ReadFile函数返回FALSE
 {
       if(GetLastError()==ERROR_IO_PENDING)
       {
        GetOverlappedResult(hCom,
         &m_osRead,&dwBytesRead,TRUE);
                 // GetOverlappedResult函数的最后一个参数设为TRUE,
                 //函数会一直等待,直到读操作完成或由于错误而返回。

        return dwBytesRead;
       }
       return 0;
 }
 return dwBytesRead;

异步写串口的示例代码:

char buffer[1024];
DWORD dwBytesWritten=1024;
 DWORD dwErrorFlags;
 COMSTAT ComStat;
OVERLAPPED m_osWrite;
 BOOL bWriteStat;

 bWriteStat=WriteFile(hCom,buffer,dwBytesWritten,
       &dwBytesWritten,&m_OsWrite);
 if(!bWriteStat)
 {
       if(GetLastError()==ERROR_IO_PENDING)
       {
        WaitForSingleObject(m_osWrite.hEvent,1000);
        return dwBytesWritten;
       }
       return 0;
 }
 return dwBytesWritten;

(4)、关闭串口

  利用API函数关闭串口非常简单,只需使用CreateFile函数返回的句柄作为参数调用CloseHandle即可:

BOOL CloseHandle(
          HANDLE hObject; //handle to object to close 
);

串口编程的一个实例

  为了让您更好地理解串口编程,下面我们分别编写两个例程(见附带的源码部分),这两个例程都实现了工控机与百特显示仪表通过RS485接口进行的串口通信。其中第一个例程采用同步串口操作,第二个例程采用异步串口操作。
  我们只介绍软件部分,RS485接口接线方法不作介绍,感兴趣的读者可以查阅相关资料。

例程1

  打开VC++6.0,新建基于对话框的工程RS485Comm,在主对话框窗口IDD_RS485COMM_DIALOG上添加两个按钮,ID分别为IDC_SEND和IDC_RECEIVE,标题分别为“发送”和“接收”;添加一个静态文本框IDC_DISP,用于显示串口接收到的内容。

在RS485CommDlg.cpp文件中添加全局变量:

HANDLE hCom;        //全局变量,串口句柄

在RS485CommDlg.cpp文件中的OnInitDialog()函数添加如下代码:

// TODO: Add extra initialization here
 hCom=CreateFile("COM1",//COM1口
       GENERIC_READ|GENERIC_WRITE, //允许读和写
       0, //独占方式
       NULL,
       OPEN_EXISTING, //打开而不是创建
       0, //同步方式
       NULL);
 if(hCom==(HANDLE)-1)
 {
       AfxMessageBox("打开COM失败!");
       return FALSE;
 }

 SetupComm(hCom,100,100); //输入缓冲区和输出缓冲区的大小都是1024

 COMMTIMEOUTS TimeOuts;
 //设定读超时
 TimeOuts.ReadIntervalTimeout=MAXDWORD;
 TimeOuts.ReadTotalTimeoutMultiplier=0;
 TimeOuts.ReadTotalTimeoutConstant=0;
 //在读一次输入缓冲区的内容后读操作就立即返回,
 //而不管是否读入了要求的字符。

 //设定写超时
 TimeOuts.WriteTotalTimeoutMultiplier=100;
 TimeOuts.WriteTotalTimeoutConstant=500;
 SetCommTimeouts(hCom,&TimeOuts); //设置超时

 DCB dcb;
 GetCommState(hCom,&dcb);
 dcb.BaudRate=9600; //波特率为9600
 dcb.ByteSize=8; //每个字节有8位
 dcb.Parity=NOPARITY; //无奇偶校验位
 dcb.StopBits=TWOSTOPBITS; //两个停止位
 SetCommState(hCom,&dcb);

 PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

分别双击IDC_SEND按钮和IDC_RECEIVE按钮,添加两个按钮的响应函数:

void CRS485CommDlg::OnSend() 
{
 // TODO: Add your control notification handler code here
 // 在此需要简单介绍百特公司XMA5000的通讯协议:
 //该仪表RS485通讯采用主机广播方式通讯。
 //串行半双工,帧11位,1个起始位(0),8个数据位,2个停止位(1)
 //如:读仪表显示的瞬时值,主机发送:DC1 AAA BB ETX
 //其中:DC1是标准ASCII码的一个控制符号,码值为11H(十进制的17)
 //在XMA5000的通讯协议中,DC1表示读瞬时值
 //AAA是从机地址码,也就是XMA5000显示仪表的通讯地址
 //BB为通道号,读瞬时值时该值为01
 //ETX也是标准ASCII码的一个控制符号,码值为03H
 //在XMA5000的通讯协议中,ETX表示主机结束符

 char lpOutBuffer[7];
 memset(lpOutBuffer,''/0'',7); //前7个字节先清零
 lpOutBuffer[0]=''/x11'';        //发送缓冲区的第1个字节为DC1
 lpOutBuffer[1]=''0'';        //第2个字节为字符0(30H)
 lpOutBuffer[2]=''0''; //第3个字节为字符0(30H)
 lpOutBuffer[3]=''1''; // 第4个字节为字符1(31H)
 lpOutBuffer[4]=''0''; //第5个字节为字符0(30H)
 lpOutBuffer[5]=''1''; //第6个字节为字符1(31H)
 lpOutBuffer[6]=''/x03''; //第7个字节为字符ETX
 //从该段代码可以看出,仪表的通讯地址为001 
 DWORD dwBytesWrite=7;
 COMSTAT ComStat;
 DWORD dwErrorFlags;
 BOOL bWriteStat;
 ClearCommError(hCom,&dwErrorFlags,&ComStat);
 bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);
 if(!bWriteStat)
 {
       AfxMessageBox("写串口失败!");
 }

}
void CRS485CommDlg::OnReceive() 
{
 // TODO: Add your control notification handler code here

 char str[100];
 memset(str,''/0'',100);
 DWORD wCount=100;//读取的字节数
 BOOL bReadStat;
 bReadStat=ReadFile(hCom,str,wCount,&wCount,NULL);
 if(!bReadStat)
       AfxMessageBox("读串口失败!");
 PurgeComm(hCom, PURGE_TXABORT|
       PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
 m_disp=str;
 UpdateData(FALSE);
 
}

您可以观察返回的字符串,其中有和仪表显示值相同的部分,您可以进行相应的字符串操作取出仪表的显示值。
打开ClassWizard,为静态文本框IDC_DISP添加CString类型变量m_disp,同时添加WM_CLOSE的相应函数:

void CRS485CommDlg::OnClose() 
{
 // TODO: Add your message handler code here and/or call default
          CloseHandle(hCom); //程序退出时关闭串口
 CDialog::OnClose();
}

程序的相应部分已经在代码内部作了详细介绍。连接好硬件部分,编译运行程序,细心体会串口同步操作部分。

例程2

  打开VC++6.0,新建基于对话框的工程RS485Comm,在主对话框窗口IDD_RS485COMM_DIALOG上添加两个按钮,ID分别为IDC_SEND和IDC_RECEIVE,标题分别为“发送”和“接收”;添加一个静态文本框IDC_DISP,用于显示串口接收到的内容。在RS485CommDlg.cpp文件中添加全局变量:

HANDLE hCom; //全局变量,

串口句柄在RS485CommDlg.cpp文件中的OnInitDialog()函数添加如下代码:

hCom=CreateFile("COM1",//COM1口
       GENERIC_READ|GENERIC_WRITE, //允许读和写
       0, //独占方式
       NULL,
       OPEN_EXISTING, //打开而不是创建
       FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
       NULL);
 if(hCom==(HANDLE)-1)
 {
       AfxMessageBox("打开COM失败!");
       return FALSE;
 }

 SetupComm(hCom,100,100); //输入缓冲区和输出缓冲区的大小都是100

 COMMTIMEOUTS TimeOuts;
 //设定读超时
 TimeOuts.ReadIntervalTimeout=MAXDWORD;
 TimeOuts.ReadTotalTimeoutMultiplier=0;
 TimeOuts.ReadTotalTimeoutConstant=0;
 //在读一次输入缓冲区的内容后读操作就立即返回,
 //而不管是否读入了要求的字符。

 //设定写超时
 TimeOuts.WriteTotalTimeoutMultiplier=100;
 TimeOuts.WriteTotalTimeoutConstant=500;
 SetCommTimeouts(hCom,&TimeOuts); //设置超时

 DCB dcb;
 GetCommState(hCom,&dcb);
 dcb.BaudRate=9600; //波特率为9600
 dcb.ByteSize=8; //每个字节有8位
 dcb.Parity=NOPARITY; //无奇偶校验位
 dcb.StopBits=TWOSTOPBITS; //两个停止位
 SetCommState(hCom,&dcb);

 PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

分别双击IDC_SEND按钮和IDC_RECEIVE按钮,添加两个按钮的响应函数:

void CRS485CommDlg::OnSend() 
{
 // TODO: Add your control notification handler code here
 OVERLAPPED m_osWrite;
 memset(&m_osWrite,0,sizeof(OVERLAPPED));
 m_osWrite.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

 char lpOutBuffer[7];
 memset(lpOutBuffer,''/0'',7);
 lpOutBuffer[0]=''/x11'';
 lpOutBuffer[1]=''0'';
 lpOutBuffer[2]=''0'';
 lpOutBuffer[3]=''1'';
 lpOutBuffer[4]=''0'';
 lpOutBuffer[5]=''1'';
 lpOutBuffer[6]=''/x03'';
 
 DWORD dwBytesWrite=7;
 COMSTAT ComStat;
 DWORD dwErrorFlags;
 BOOL bWriteStat;
 ClearCommError(hCom,&dwErrorFlags,&ComStat);
 bWriteStat=WriteFile(hCom,lpOutBuffer,
       dwBytesWrite,& dwBytesWrite,&m_osWrite);

 if(!bWriteStat)
 {
       if(GetLastError()==ERROR_IO_PENDING)
       {
        WaitForSingleObject(m_osWrite.hEvent,1000);
       }
 }

}

void CRS485CommDlg::OnReceive() 
{
 // TODO: Add your control notification handler code here
 OVERLAPPED m_osRead;
 memset(&m_osRead,0,sizeof(OVERLAPPED));
 m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

 COMSTAT ComStat;
 DWORD dwErrorFlags;
 
 char str[100];
 memset(str,''/0'',100);
 DWORD dwBytesRead=100;//读取的字节数
 BOOL bReadStat;

 ClearCommError(hCom,&dwErrorFlags,&ComStat);
 dwBytesRead=min(dwBytesRead, (DWORD)ComStat.cbInQue);
 bReadStat=ReadFile(hCom,str,
       dwBytesRead,&dwBytesRead,&m_osRead);
 if(!bReadStat)
 {
       if(GetLastError()==ERROR_IO_PENDING)
           //GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作
       {
        WaitForSingleObject(m_osRead.hEvent,2000);
            //使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
            //当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
       }
 }

 PurgeComm(hCom, PURGE_TXABORT|
       PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
 m_disp=str;
 UpdateData(FALSE);
}

打开ClassWizard,为静态文本框IDC_DISP添加CString类型变量m_disp,同时添加WM_CLOSE的相应函数:

void CRS485CommDlg::OnClose() 
{
 // TODO: Add your message handler code here and/or call default
          CloseHandle(hCom); //程序退出时关闭串口
 CDialog::OnClose();
}

您可以仔细对照这两个例程,细心体会串口同步操作和异步操作的区别。

          下载源代码

 

抱歉!评论已关闭.