现在的位置: 首页 > 综合 > 正文

camera isp .

2013年08月17日 ⁄ 综合 ⁄ 共 3725字 ⁄ 字号 评论关闭

 

1. 目标[52RD.com]

手机摄像头模组用ISP功能模块的市场走向及研发方向。为能够正确认识手机摄像模组行业提供技术及市场依据。[52RD.com]

2. ISP在模组上的应用原理[52RD.com]
2.1 功能区域[52RD.com]
无论数码相机、摄像机或者摄像手机,其影像数据从前端感应后,皆须经过ASP(Analog Signal Processing)、ADC(Analog-Digital Converter)、前期影像处理(Pre-ISP)与后端影像处理(Post-ISP)四个阶段后,影像数据才能最终呈现于终端设备上(图一)。

但由于图像传感器的像素高低不同、及其他成本等的考虑,ISP各功能区域会依手机市场特性做分散配置或整合处理,例如,低端相机将Pre-ISP与传感器整合在一起,2.0M像素手机将所有的ISP功能单独做成一个芯片等。
[52RD.com]
2.1.1 ASP [52RD.com]

ASP(Analog Signal Processor)主要是针对图像传感器采集的电压或电流信号进行处理,主要作用是信号放大、自动曝光调整、时序控制、像素抽样控制等。因其与初始信号的绝对相关性,一般的图像传感器厂商皆会将此项功能直接与传感器做在一块。在图一中即为蓝色部分。传感数据经过ASP处理后,输出数据为Raw Data。
[52RD.com]
2.1.2 Pre-ISP [52RD.com]

Pre-ISP(Image Signal Processor)为前端影像处理,主要针对ADC转换后传出的数字数据(Raw data),进行影像坏点修补、白平衡、gamma校正、锐利度、颜色插值等。在低像素的产品中,例如0.3M像素,因影像数据较少,不需要大规模的复杂处理,会将Pre-ISP与图像传感器做在同一颗芯片中;但高像素CMOS传感器,因需要处理的像素数越来越多,虽然将Pre-ISP集成在sensor 内部从制造技术上来讲不困难,但因成本及成像质量的原因,有些手机设计公司在设计时会将集成于sensor内部的Pre-ISP功能屏蔽掉,并维持传感器
ADC输出的原始资料,交由单独的ISP芯片或集成在Baseband的ISP进行处理。
[52RD.com]

由Pre-ISP处理完后的数据分为RGB和YUV,RGB为三原色,数据比YUV较大,可以方便后续处理单元(Post-ISP)做更为多元的变化;YUV为RGB三原色经内插法所得,数据量较小,但不利于后续的处理单元进行处理。
[52RD.com]
对于实力强的手机研发公司比较倾向于使用Raw data数据或者RGB数据,这样可以根据自己的需要调整出更完美的画面质量。Raw data数据也为以后高端市场的使用方向,但国内现阶段2.0M像素的模组应用还处于初级阶段。因此还是以YUV输出的为主。
[52RD.com]
2.1.3 Post-ISP [52RD.com]

Post-ISP虽然也称为后端影响处理,但其与成像相关的工作不多,主要负责数据压缩与后端接口界面控制,以及数据传输、控制等工作,其中还包括LCD影像预览、镜头对焦控制、使用界面等。
[52RD.com]
2.2 ISP发展阶段 [52RD.com]

2.2.1 第一阶段 [52RD.com]

第一阶段因像素不高(CIF等级),因此其结构与一般手机相差不多, Pre-ISP功能与图像传感器整合,而Post-ISP则依赖手机基带芯片,显示屏则经由系统提供,其结构如下
[52RD.com]
[52RD.com]
图二 手机摄像模组后端芯片第一阶段原理图
[52RD.com]

2.2.2 第二阶段 [52RD.com]

随着像素增加(CIF至VGA),为维持后端手机基带芯片的通讯功能,开始将原来负责的JPEG压缩、数据流的协调处理等功能独立成单一芯片完成,而影像处理Pre-ISP则交由手机设计公司自行决定,分集成到图像传感器内部和与Post-ISP整合两种。
[52RD.com]
此阶段方案已被淘汰,VGA像素的Post-ISP功能已可被Baseband集成。


图三 手机摄像模组后端芯片第二阶段原理图[52RD.com]

2.2.3 第三阶段[52RD.com]
此时像素已由VGA转为百万像素,高像素的Pre-ISP,因所需的存储器及电源需求过大,在当时的技术条件下,sensor端已无法全部处理,因此将 Pre-ISP与Post-ISP整合成完整的ISP。另因为对显示屏幕的处理要求更高,此阶段也将显示器控制功能一并整合,以减少baseband的处理负担,其结构见图四。

图四手机摄像模组后端芯片第三阶段原理图
[52RD.com]
2.2.4 第四阶段 [52RD.com]

Main Panel [52RD.com]

(240*320) [52RD.com]

[52RD.com]
随像素增加到2.0M及以上,厂商将更多的功能例如MP3、3D sound processor、audio processor等亦集成进单独的ISP芯片,此时称之为MMP(Mobile Multimedia Processor),

图五手机摄像模组后端芯片第四阶段原理图
[52RD.com]
表一 手机摄像模组后端芯片发展趋势
[52RD.com]

阶段搭配像素趋势项目 [52RD.com]

第一阶段CIFl 结构与一般手机相差无异
[52RD.com]

l Pre-ISP功能可与图像传感器整合
[52RD.com]

l Post-ISP依靠手机基带芯片
[52RD.com]

第二阶段VGAl Post-ISP独立成单一芯片
[52RD.com]

l Pre-ISP或由sensor集成或与Post-ISP整合
[52RD.com]

第三阶段Megal 图像传感器无法全部处理Pre-ISP,与Post-ISP整合成单独的ISP芯片
[52RD.com]
第四阶段2Mega及以上l 单独的MMP(ISP)芯片集成更多的功能,以迎合2.5G及3G的发展
[52RD.com]
[52RD.com]
3. 现阶段ISP的主要应用方案 [52RD.com]

表二 现阶段ISP的主要应用方案 [52RD.com]

像素输出格式ISP或手机设计方案备注
[52RD.com]

VGAYUV/RGB/ [52RD.com]

Raw datal Sensor集成Pre-ISP;
[52RD.com]

l Baseband集成Post-ISP。OV是VGA的首选sensor厂家,其主流产品:OV7660/OV7663/OV7670皆集成Pre-ISP,而MTK则将Post-ISP部分集成进Baseband。
[52RD.com]
l Baseband未集成Post-ISP;
[52RD.com]

l ISP(Pre-ISP&Post-ISP)功能被集成于MMP中;有一定比例的Baseband厂商(例如英飞凌)未将Post-ISP集成进Baseband。而是采用MMP的方式来处理。
[52RD.com]
2.0Mega及以上YUV/RGBl Sensor中集成Pre-ISP;
[52RD.com]

l ISP(Pre- ISP&Post-ISP)功能被集成于MMP中。Baseband不参与图像处理手机设计公司可以采用sensor输出的YUV或RGB,或者直接将Pre-ISP屏蔽掉,所有图像处理工作由MMP芯片来做。(理论上来讲,MMP处理效果应该好一点,实际上有时因调试工程师水平的原因,无法完全发挥MMP的潜力。)
[52RD.com]
Raw datal Sensor中不集成Pre-ISP;
[52RD.com]

l ISP(Pre-ISP & Post-ISP)功能被集成于MMP中。Baseband不参与图像处理所有图像处理工作由MMP芯片来做。
[52RD.com]
[52RD.com]
将来的趋势,因成本的原因,基带芯片会集成所有的图像处理功能。
[52RD.com]

4. 评价 [52RD.com]

l
从成本来讲,ISP与Sensor之间的关系是背离集成的。将ISP集成在sensor上的成本比ISP集成在MMP或baseband上要高很多。随着传感器分辨率的提高,越来越多的传感器将只整合输出数字信号所必需的电路,而将图像处理及压缩等功能集成于MMP或Baseband中。[52RD.com]

l 从成像质量来看,发展的趋势也是背离集成,在MMP中集成功能强大的图像处理功能,而且此趋势随分辨率的提高会愈加明显。[52RD.com]

l 上面两个评价是发展趋势,但现在的市场情况各种应用方案都存在,且没有明显的强弱之分。MTK SoC方案在低端VGA产品中占主导,并且有大批的拥护者,但现仍有大批平台公司仍然没有走基带集成之路。且高端产品中,从我的了解中还没有将ISP功能集成进Baseband中的,大部分仍然采用MMP方案。但有资料表明,将ISP功能集成进Baseband中制造成本几乎可以忽略不计,此方案较之 MMP方案仍然有成本空间。基带产品和应用处理器领域的大玩家都期待在它们的芯片上增加ISP功能。[52RD.com]

l 无论如何,不管是当前的低端市场情况,还是将来的高端产品,独立的ISP(MMP)芯片都有较大的市场空间。真正的高像素SoC基带方案的时代到来还有很长的路要走。

抱歉!评论已关闭.