现在的位置: 首页 > 综合 > 正文

Linux互斥锁、条件变量和信号量

2018年02月23日 ⁄ 综合 ⁄ 共 3347字 ⁄ 字号 评论关闭

进行多线程编程,最应该注意的就是那些共享的数据,因为无法知道哪个线程会在哪个时候对它进行操作,也无法得知哪个线程会先运行,哪个线程会后运行。所以,要对这些资源进行合理的分配和正确的使用。在Linux下,提供了互斥锁、条件变量和信号量来对共享资源进行保护。


一、互斥锁

互斥锁,是一种信号量,常用来防止两个进程或线程在同一时刻访问相同的共享资源。

需要的头文件:pthread.h

互斥锁标识符:pthread_mutex_t



如果一个线程已经给一个互斥量上锁了,后来在操作的过程中又再次调用了该上锁的操作,那么该线程将会无限阻塞在这个地方,从而导致死锁。这就需要互斥量的属性。


互斥量分为下面三种:

1、快速型。这种类型也是默认的类型。该线程的行为正如上面所说的。

2、递归型。如果遇到我们上面所提到的死锁情况,同一线程循环给互斥量上锁,那么系统将会知道该上锁行为来自同一线程,那么就会同意线程给该互斥量上锁。

3、错误检测型。如果该互斥量已经被上锁,那么后续的上锁将会失败而不会阻塞,pthread_mutex_lock()操作将会返回EDEADLK。



前面我们提到在调用pthread_mutex_lock()的时候,如果此时mutex已经被其他线程上锁,那么该操作将会一直阻塞在这个地方。如果我们此时不想一直阻塞在这个地方,那么可以调用下面函数:pthread_mutex_trylock。

如果此时互斥量没有被上锁,那么pthread_mutex_trylock将会返回0,并会对该互斥量上锁。如果互斥量已经被上锁,那么会立刻返回EBUSY。


二、条件变量

需要的头文件:pthread.h

条件变量标识符:pthread_cond_t


1、互斥锁的存在问题:

互斥锁一个明显的缺点是它只有两种状态:锁定和非锁定。设想一种简单情景:多个线程访问同一个共享资源时,并不知道何时应该使用共享资源,如果在临界区里加入判断语句,或者可以有效,但一来效率不高,二来复杂环境下就难以编写了,这是我们需要一个结构,能在条件成立时触发相应线程,进行变量修改和访问。


2、条件变量:

条件变量通过允许线程阻塞和等待另一个线程发送信号的方法弥补了互斥锁的不足,它常和互斥锁一起使用。使用时,条件变量被用来阻塞一个线程,当条件不满足时,线程往往解开相应的互斥锁并等待条件发生变化。一旦其它的某个线程改变了条件变量,它将通知相应的条件变量唤醒一个或多个正被此条件变量阻塞的线程。这些线程将重新锁定互斥锁并重新测试条件是否满足。一般说来,条件变量被用来进行线承间的同步。


pthread_cond_signal用来激活被阻塞并等待在该条件变量cond上的一个线程。存在多个线程阻塞在此条件变量上时,哪一个线程被唤醒是由线程的调度策略唤醒其中的一个。要注意的是,必须用保护条件变量的互斥锁来保护这个函数,否则条件满足信号又可能在测试条件和调用pthread_cond_wait函数之间被发出,从而造成无限制的等待。pthread_cond_broadcast()则激活所有等待线程。


等待条件有两种方式:无条件等待pthread_cond_wait()和计时等待pthread_cond_timedwait()。pthread_cond_wait使线程阻塞在一个条件变量上。线程解开mutex指向的锁并被条件变量cond阻塞。线程可以被函数pthread_cond_signal和函数 pthread_cond_broadcast唤醒,但是要注意的是,条件变量只是起阻塞和唤醒线程的作用,具体的判断条件还需用户给出。线程被唤醒后,它将重新检查判断条件是否满足,如果还不满足,一般说来线程应该仍阻塞在这里,被等待被下一次唤醒。这个过程一般用while语句实现。计时等待方式如果在给定时刻前条件没有满足,则返回ETIMEOUT,结束等待。

无论哪种等待方式,都必须和一个互斥锁配合,以防止多个线程同时请求pthread_cond_wait()(或 pthread_cond_timedwait(),下同)的竞争条件(Race Condition)。mutex互斥锁必须是普通锁(PTHREAD_MUTEX_TIMED_NP)或者适应锁(PTHREAD_MUTEX_ADAPTIVE_NP),且在调用pthread_cond_wait()前必须由本线程加锁(pthread_mutex_lock()),而在更新条件等待队列以前,mutex保持锁定状态,并在线程挂起进入等待前解锁。在条件满足从而离开
pthread_cond_wait()之前,mutex将被重新加锁,以与进入pthread_cond_wait()前的加锁动作对应。


pthread_cond_wait()和pthread_cond_timedwait()都被实现为取消点,因此,在该处等待的线程将立即重新运行,在重新锁定mutex后离开 pthread_cond_wait(),然后执行取消动作。也就是说如果pthread_cond_wait()被取消,mutex是保持锁定状态的,因而需要定义退出回调函数来为其解锁。

pthread_cond_wait实际上可以看作是以下几个动作的合体:

解锁线程锁;

等待条件为true;

加锁线程锁;


使用形式:

// thread a

pthread_mutex_lock(&mutex);

if (condition is true)

pthread_cond_signal(&cond);

pthread_mutex_unlock(&mutex);


// thread b

pthread_mutex_lock(&mutex);

while (condition is false)

pthread_cond_wait(&cond, &mutex);

pthread_mutex_unlock(&mutex);

/*线程b中为什么使用while呢?因为在pthread_cond_signal和pthread_cond_wait返回之间,有时间差,假设在这个时间差内,条件改变了,显然需要重新检查条件。也就是说在pthread_cond_wait被唤醒的时候可能该条件已经不成立。*/


pthread_cond_destroy()只有在没有线程在该条件变量上等待的时候才能注销这个条件变量,否则返回 EBUSY。因为Linux实现的条件变量没有分配什么资源,所以注销动作只包括检查是否有等待线程。


三、信号量

信号量本质上是一个非负的整数计数器,它被用来控制对公共资源的访问。每一次调用wait操作将会使semaphore值减1,而如果semaphore值已经为0,则wait操作将会阻塞。每一次调用post操作将会使semaphore值加1。

需要的头文件:semaphore.h

信号量标识符:sem_t



信号量与线程锁、条件变量相比还有以下几点不同:

1)锁必须是同一个线程获取以及释放,否则会死锁。而条件变量和信号量则不必。

2)信号的递增与减少会被系统自动记住,系统内部有一个计数器实现信号量,不必担心会丢失,而唤醒一个条件变量时,如果没有相应的线程在等待该条件变量,这次唤醒将被丢失。




[NOTE]

线程数据

  在单线程的程序里,有两种基本的数据:全局变量和局部变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。它和全局变量很象,在线程内部,各个函数可以象使用全局变量一样调用它,但它对线程外部的其它线程是不可见的。这种数据的必要性是显而易见的。例如我们常见的变量errno,它返回标准的出错信息。它显然不能是一个局部变量,几乎每个函数都应该可以调用它;但它又不能是一个全局变量,否则在 A线程里输出的很可能是B线程的出错信息。要实现诸如此类的变量,我们就必须使用线程数据。我们为每个线程数据创建一个键,它和这个键相关联,在各个线程里,都使用这个键来指代线程数据,但在不同的线程里,这个键代表的数据是不同的,在同一个线程里,它代表同样的数据内容。

  和线程数据pthread_key_t相关的函数主要有4个:创建一个键;为一个键指定线程数据;从一个键读取线程数据;删除键。

抱歉!评论已关闭.