现在的位置: 首页 > 综合 > 正文

linux内核数据结构之kfifo

2018年05月08日 ⁄ 综合 ⁄ 共 7198字 ⁄ 字号 评论关闭

1、前言

  最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:

环形缓冲区的详细介绍及实现方法可以参考http://en.wikipedia.org/wiki/Circular_buffer,介绍的非常详细,列举了实现环形队列的几种方法。环形队列的不便之处在于如何判断队列是空还是满。维基百科上给三种实现方法。

2、linux 内核kfifo

  kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:

struct kfifo {
    unsigned char *buffer;     /* the buffer holding the data */
    unsigned int size;         /* the size of the allocated buffer */
    unsigned int in;           /* data is added at offset (in % size) */
    unsigned int out;          /* data is extracted from off. (out % size) */
    spinlock_t *lock;          /* protects concurrent modifications */
};

kfifo提供的方法有:

//根据给定buffer创建一个kfifo
struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
                gfp_t gfp_mask, spinlock_t *lock);
//给定size分配buffer和kfifo
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask,
                 spinlock_t *lock);
//释放kfifo空间
void kfifo_free(struct kfifo *fifo)
//向kfifo中添加数据
unsigned int kfifo_put(struct kfifo *fifo,
                const unsigned char *buffer, unsigned int len)
//从kfifo中取数据
unsigned int kfifo_get(struct kfifo *fifo,
                unsigned char *buffer, unsigned int len)
//获取kfifo中有数据的buffer大小
unsigned int kfifo_len(struct kfifo *fifo)

定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下

struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
             gfp_t gfp_mask, spinlock_t *lock)
{
    struct kfifo *fifo;
    /* size must be a power of 2 */
    BUG_ON(!is_power_of_2(size));
    fifo = kmalloc(sizeof(struct kfifo), gfp_mask);
    if (!fifo)
        return ERR_PTR(-ENOMEM);
    fifo->buffer = buffer;
    fifo->size = size;
    fifo->in = fifo->out = 0;
    fifo->lock = lock;

    return fifo;
}
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
{
    unsigned char *buffer;
    struct kfifo *ret;
    if (!is_power_of_2(size)) {
        BUG_ON(size > 0x80000000);
        size = roundup_pow_of_two(size);
    }
    buffer = kmalloc(size, gfp_mask);
    if (!buffer)
        return ERR_PTR(-ENOMEM);
    ret = kfifo_init(buffer, size, gfp_mask, lock);

    if (IS_ERR(ret))
        kfree(buffer);
    return ret;
}

在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size
– 1)

      kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:

static inline unsigned int kfifo_put(struct kfifo *fifo,
                const unsigned char *buffer, unsigned int len)
{
    unsigned long flags;
    unsigned int ret;
    spin_lock_irqsave(fifo->lock, flags);
    ret = __kfifo_put(fifo, buffer, len);
    spin_unlock_irqrestore(fifo->lock, flags);
    return ret;
}

static inline unsigned int kfifo_get(struct kfifo *fifo,
                     unsigned char *buffer, unsigned int len)
{
    unsigned long flags;
    unsigned int ret;
    spin_lock_irqsave(fifo->lock, flags);
    ret = __kfifo_get(fifo, buffer, len);
        //当fifo->in == fifo->out时,buufer为空
    if (fifo->in == fifo->out)
        fifo->in = fifo->out = 0;
    spin_unlock_irqrestore(fifo->lock, flags);
    return ret;
}


unsigned int __kfifo_put(struct kfifo *fifo,
            const unsigned char *buffer, unsigned int len)
{
    unsigned int l;
       //buffer中空的长度
    len = min(len, fifo->size - fifo->in + fifo->out);
    /*
     * Ensure that we sample the fifo->out index -before- we
     * start putting bytes into the kfifo.
     */
    smp_mb();
    /* first put the data starting from fifo->in to buffer end */
    l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
    memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
    /* then put the rest (if any) at the beginning of the buffer */
    memcpy(fifo->buffer, buffer + l, len - l);

    /*
     * Ensure that we add the bytes to the kfifo -before-
     * we update the fifo->in index.
     */
    smp_wmb();
    fifo->in += len;  //每次累加,到达最大值后溢出,自动转为0
    return len;
}

unsigned int __kfifo_get(struct kfifo *fifo,
             unsigned char *buffer, unsigned int len)
{
    unsigned int l;
        //有数据的缓冲区的长度
    len = min(len, fifo->in - fifo->out);
    /*
     * Ensure that we sample the fifo->in index -before- we
     * start removing bytes from the kfifo.
     */
    smp_rmb();
    /* first get the data from fifo->out until the end of the buffer */
    l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
    memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);
    /* then get the rest (if any) from the beginning of the buffer */
    memcpy(buffer + l, fifo->buffer, len - l);
    /*
     * Ensure that we remove the bytes from the kfifo -before-
     * we update the fifo->out index.
     */
    smp_mb();
    fifo->out += len; //每次累加,到达最大值后溢出,自动转为0
    return len;
}

put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。

(1)空的kfifo,



(2)put一个buffer后


(3)get一个buffer后


(4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去


3、测试程序

 仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:

/**@brief 仿照linux kfifo写的ring buffer
 *@atuher Anker  date:2013-12-18
* ring_buffer.h
 * */

#ifndef KFIFO_HEADER_H 
#define KFIFO_HEADER_H

#include <inttypes.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <assert.h>

//判断x是否是2的次方
#define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
//取a和b中最小值
#define min(a, b) (((a) < (b)) ? (a) : (b))

struct ring_buffer
{
    void         *buffer;     //缓冲区
    uint32_t     size;       //大小
    uint32_t     in;         //入口位置
    uint32_t       out;        //出口位置
    pthread_mutex_t *f_lock;    //互斥锁
};
//初始化缓冲区
struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock)
{
    assert(buffer);
    struct ring_buffer *ring_buf = NULL;
    if (!is_power_of_2(size))
    {
    fprintf(stderr,"size must be power of 2.\n");
        return ring_buf;
    }
    ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer));
    if (!ring_buf)
    {
        fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s",
            errno, strerror(errno));
        return ring_buf;
    }
    memset(ring_buf, 0, sizeof(struct ring_buffer));
    ring_buf->buffer = buffer;
    ring_buf->size = size;
    ring_buf->in = 0;
    ring_buf->out = 0;
        ring_buf->f_lock = f_lock;
    return ring_buf;
}
//释放缓冲区
void ring_buffer_free(struct ring_buffer *ring_buf)
{
    if (ring_buf)
    {
    if (ring_buf->buffer)
    {
        free(ring_buf->buffer);
        ring_buf->buffer = NULL;
    }
    free(ring_buf);
    ring_buf = NULL;
    }
}

//缓冲区的长度
uint32_t __ring_buffer_len(const struct ring_buffer *ring_buf)
{
    return (ring_buf->in - ring_buf->out);
}

//从缓冲区中取数据
uint32_t __ring_buffer_get(struct ring_buffer *ring_buf, void * buffer, uint32_t size)
{
    assert(ring_buf || buffer);
    uint32_t len = 0;
    size  = min(size, ring_buf->in - ring_buf->out);        
    /* first get the data from fifo->out until the end of the buffer */
    len = min(size, ring_buf->size - (ring_buf->out & (ring_buf->size - 1)));
    memcpy(buffer, ring_buf->buffer + (ring_buf->out & (ring_buf->size - 1)), len);
    /* then get the rest (if any) from the beginning of the buffer */
    memcpy(buffer + len, ring_buf->buffer, size - len);
    ring_buf->out += size;
    return size;
}
//向缓冲区中存放数据
uint32_t __ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    assert(ring_buf || buffer);
    uint32_t len = 0;
    size = min(size, ring_buf->size - ring_buf->in + ring_buf->out);
    /* first put the data starting from fifo->in to buffer end */
    len  = min(size, ring_buf->size - (ring_buf->in & (ring_buf->size - 1)));
    memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf->size - 1)), buffer, len);
    /* then put the rest (if any) at the beginning of the buffer */
    memcpy(ring_buf->buffer, buffer + len, size - len);
    ring_buf->in += size;
    return size;
}

uint32_t ring_buffer_len(const struct ring_buffer *ring_buf)
{
    uint32_t len = 0;
    pthread_mutex_lock(ring_buf->f_lock);
    len = __ring_buffer_len(ring_buf);
    pthread_mutex_unlock(ring_buf->f_lock);
    return len;
}

uint32_t ring_buffer_get(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    uint32_t ret;
    pthread_mutex_lock(ring_buf->f_lock);
    ret = __ring_buffer_get(ring_buf, buffer, size);
    //buffer中没有数据
    if (ring_buf->in == ring_buf->out)
    ring_buf->in = ring_buf->out = 0;
    pthread_mutex_unlock(ring_buf->f_lock);
    return ret;
}

uint32_t ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    uint32_t ret;
    pthread_mutex_lock(ring_buf->f_lock);
    ret = __ring_buffer_put(ring_buf, buffer, size);
    pthread_mutex_unlock(ring_buf->f_lock);
    return ret;
}
#endif

抱歉!评论已关闭.