现在的位置: 首页 > 编程语言 > 正文

Java中集合LinkedList的原理与使用方法

2020年02月14日 编程语言 ⁄ 共 6698字 ⁄ 字号 评论关闭

前言

LinkedList和ArrayList一样是集合List的实现类,虽然较之ArrayList,其使用场景并不多,但同样有用到的时候,那么接下来,我们来认识一下它。

一. 定义一个LinkedList

public static void main(String[] args) { List<String> stringList = new LinkedList<>(); List<String> tempList = new ArrayList<>(); tempList.add("牛魔王"); tempList.add("蛟魔王"); tempList.add("鹏魔王"); tempList.add("狮驼王"); tempList.add("猕猴王"); tempList.add("禺贼王"); tempList.add("美猴王"); List<String> stringList2 = new LinkedList<>(tempList);}

上面代码中采用了两种方式来定义LinkedList,可以定义一个空集合,也可以传递已有的集合,将其转化为LinkedList。我们看一下源码

public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable{ transient int size = 0; /** * Pointer to first node. * Invariant: (first == null && last == null) || * (first.prev == null && first.item != null) */ transient Node<E> first; /** * Pointer to last node. * Invariant: (first == null && last == null) || * (last.next == null && last.item != null) */ transient Node<E> last; /** * Constructs an empty list. */ public LinkedList() { } /** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public LinkedList(Collection<? extends E> c) { this(); addAll(c); }}

LinkedList继承了AbstractSequentialList类,实现了List接口,AbstractSequentialList中已经实现了很多方法,如get(int index)、set(int index, E element)、add(int index, E element) 和 remove(int index),这些方法是我们集合操作时使用最多的,不过这些方法在LinkedList中都已经被重写了,而抽象方法在LinkedList中有了具体实现。因此我们回到LinkedList类

LinkedList类中定义了三个变量

size:集合的长度

first:双向链表头部节点

last:双向链表尾部节点

针对first变量和last变量,我们看到是Node类的实体,这是一个静态内部类,关于静态内部类的讲解,我们在static五大应用场景一章已经有说明

private static class Node<E> { E item; Node<E> next; Node<E> prev; Node(Node<E> prev, E element, Node<E> next) { this.item = element; this.next = next; this.prev = prev; }}

我们知道LinkedList是通过双向链表实现的,而双向链表就是通过Node类来体现的,类中通过item变量保存了当前节点的值,通过next变量指向下一个节点,通过prev变量指向上一个节点。

二. LinkedList常用方法

1. get(int index)

我们知道随机读取元素不是LinkedList所擅长的,读取效率比起ArrayList也低得多,那么我来看一下为什么

public E get(int index) { checkElementIndex(index); return node(index).item;}/** * 返回一个指定索引的非空节点. */Node<E> node(int index) { // assert isElementIndex(index); if (index < (size >> 1)) { Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; }}

从上述代码中我们可以看到get(int index)方法是通过node(int index)来实现的,它的实现机制是:

比较传入的索引参数index与集合长度size/2,如果是index小,那么从第一个顺序循环,直到找到为止;如果index大,那么从最后一个倒序循环,直到找到为止。也就是说越靠近中间的元素,调用get(int index方法遍历的次数越多,效率也就越低,而且随着集合的越来越大,get(int index)执行性能也会指数级降低。因此在使用LinkedList的时候,我们不建议使用这种方式读取数据,可以使用getFirst(),getLast()方法,将直接用到类中的first和last变量。

2. add(E e) 和 add(int index, E element)

大家都在说LinkedList插入、删除操作效率比较高,以stringList.add(“猪八戒”)为例来看到底发生了什么?

在LinkedList中我们找到add(E e)方法的源码

public boolean add(E e) { linkLast(e); return true;}/** * 设置元素e为最后一个元素*/void linkLast(E e) { final Node<E> l = last; final Node<E> newNode = new Node<>(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++;}

很好理解:

情况1:假如stringList为空,那么添加进来的node就是first,也是last,这个node的prev和next都为null;

情况2:假如stringList不为空,那么添加进来的node就是last,node的prev指向以前的最后一个元素,node的next为null;同时以前的最后一个元素的next.

而如果通过stringList.add(1, “猪八戒”)这种方式将元素添加到集合中呢?

//在指定位置添加一个元素public void add(int index, E element) { checkPositionIndex(index); if (index == size) linkLast(element); else linkBefore(element, node(index));}/** * 在一个非空节点前插入一个元素 */void linkBefore(E e, Node<E> succ) { // assert succ != null; final Node<E> pred = succ.prev; final Node<E> newNode = new Node<>(pred, e, succ); succ.prev = newNode; if (pred == null) first = newNode; else pred.next = newNode; size++; modCount++;}

其实从代码中看到和add(E e)的代码实现没有本质区别,都是通过新建一个Node实体,同时指定其prev和next来实现,不同点在于需要调用node(int index)通过传入的index来定位到要插入的位置,这个也是比较耗时的,参考上面的get(int index)方法。

其实看到这里,大家也都明白了。

LinkedList插入效率高是相对的,因为它省去了ArrayList插入数据可能的数组扩容和数据元素移动时所造成的开销,但数据扩容和数据元素移动却并不是时时刻刻都在发生的。

3. remove(Object o) 和 remove(int index)

这里removeFirst()和removeLast()就不多说了,会用到类中定义的first和last变量,非常简单,我们看一下remove(Object o) 和 remove(int index)源码

//删除某个对象public boolean remove(Object o) { if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false;}//删除某个位置的元素public E remove(int index) { checkElementIndex(index); return unlink(node(index));}//删除某节点,并将该节点的上一个节点(如果有)和下一个节点(如果有)关联起来E unlink(Node<E> x) { final E element = x.item; final Node<E> next = x.next; final Node<E> prev = x.prev; if (prev == null) { first = next; } else { prev.next = next; x.prev = null; } if (next == null) { last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element;}

其实实现都非常简单,先找到要删除的节点,remove(Object o)方法遍历整个集合,通过 == 或 equals方法进行判断;remove(int index)通过node(index)方法。

4. LinkedList遍历

我们主要列举一下三种常用的遍历方式,

普通for循环,增强for循环,Iterator迭代器

public static void main(String[] args) { LinkedList<Integer> list = getLinkedList(); //通过快速随机访问遍历LinkedList listByNormalFor(list); //通过增强for循环遍历LinkedList listByStrengThenFor(list); //通过快迭代器遍历LinkedList listByIterator(list);}/** * 构建一个LinkedList集合,包含元素50000个 * @return */private static LinkedList<Integer> getLinkedList() { LinkedList list = new LinkedList(); for (int i = 0; i < 50000; i++){ list.add(i); } return list;}/** * 通过快速随机访问遍历LinkedList */private static void listByNormalFor(LinkedList<Integer> list) { // 记录开始时间 long start = System.currentTimeMillis(); int size = list.size(); for (int i = 0; i < size; i++) { list.get(i); } // 记录用时 long interval = System.currentTimeMillis() - start; System.out.println("listByNormalFor:" + interval + " ms");}/** * 通过增强for循环遍历LinkedList * @param list */public static void listByStrengThenFor(LinkedList<Integer> list){ // 记录开始时间 long start = System.currentTimeMillis(); for (Integer i : list) { } // 记录用时 long interval = System.currentTimeMillis() - start; System.out.println("listByStrengThenFor:" + interval + " ms");}/** * 通过快迭代器遍历LinkedList */private static void listByIterator(LinkedList<Integer> list) { // 记录开始时间 long start = System.currentTimeMillis(); for(Iterator iter = list.iterator(); iter.hasNext();) { iter.next(); } // 记录用时 long interval = System.currentTimeMillis() - start; System.out.println("listByIterator:" + interval + " ms");}

执行结果如下:

listByNormalFor:1067 mslistByStrengThenFor:3 mslistByIterator:2 ms

通过普通for循环随机访问的方式执行时间远远大于迭代器访问方式,这个我们可以理解,在前面的get(int index)方法中已经有过说明,那么为什么增强for循环能做到迭代器遍历差不多的效率?

通过反编译工具后得到如下代码

public static void listByStrengThenFor(LinkedList<Integer> list) { long start = System.currentTimeMillis(); Integer localInteger; for (Iterator localIterator = list.iterator(); localIterator.hasNext(); localInteger = (Integer)localIterator.next()) {} long interval = System.currentTimeMillis() - start; System.out.println("listByStrengThenFor:" + interval + " ms");}

很明显了,增强for循环遍历时也调用了迭代器Iterator,不过多了一个赋值的过程。

还有类似于pollFirst(),pollLast()取值后删除的方法也能达到部分的遍历效果。

三. 总结

本文基于java8从定义一个LinkList入手,逐步展开,从源码角度分析LinkedList双向链表的结构是如何构建的,同时针对其常用方法进行分析,包括get,add,remove以及常用的遍历方法,并简单的说明了它的插入、删除操作为何相对高效,而取值操作性能相对较低,若有不对之处,请批评指正,望共同进步,谢谢!

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。

本文标题: Java中集合LinkedList的原理与使用方法

以上就上有关Java中集合LinkedList的原理与使用方法的相关介绍,要了解更多java中的linkedlist,java集合linkedlist内容请登录学步园。

抱歉!评论已关闭.