现在的位置: 首页 > 综合 > 正文

ReentrantLock是什么?基本方法有哪些

2020年02月21日 综合 ⁄ 共 8416字 ⁄ 字号 评论关闭

  在开始本篇文章的内容讲述前,先来回答我一个问题,为什么 JDK 提供一个 synchronized 关键字之后还要提供一个 Lock 锁,这不是多此一举吗?难道 JDK 设计人员都是沙雕吗?

  初识 ReentrantLockReentrantLock 位于 java.util.concurrent.locks 包下,它实现了 Lock 接口和 Serializable 接口。

  ReentrantLock 是一把可重入锁和互斥锁,它具有与 synchronized 关键字相同的含有隐式监视器锁(monitor)的基本行为和语义,但是它比 synchronized 具有更多的方法和功能。

  ReentrantLock 基本方法构造方法

  ReentrantLock 类中带有两个构造函数,一个是默认的构造函数,不带任何参数;一个是带有 fair 参数的构造函数。

  public ReentrantLock() { sync = new NonfairSync();}public ReentrantLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync();}

  第二个构造函数也是判断 ReentrantLock 是否是公平锁的条件,如果 fair 为 true,则会创建一个公平锁的实现,也就是 new FairSync(),如果 fair 为 false,则会创建一个 非公平锁的实现,也就是 new NonfairSync(),默认的情况下创建的是非公平锁。

  // 创建的是公平锁private ReentrantLock lock = new ReentrantLock(true);// 创建的是非公平锁private ReentrantLock lock = new ReentrantLock(false);// 默认创建非公平锁private ReentrantLock lock = new ReentrantLock();

  FairSync 和 NonfairSync 都是 ReentrantLock 的内部类,继承于 Sync 类,下面来看一下它们的继承结构,便于梳理。

  abstract static class Sync extends AbstractQueuedSynchronizer {...}static final class FairSync extends Sync {...} static final class NonfairSync extends Sync {...}

  在多线程尝试加锁时,如果是公平锁,那么锁获取的机会是相同的。否则,如果是非公平锁,那么 ReentrantLock 则不会保证每个锁的访问顺序。

  下面是一个公平锁的实现:

  public class MyFairLock extends Thread{ private ReentrantLock lock = new ReentrantLock(true); public void fairLock(){ try { lock.lock(); System.out.println(Thread.currentThread().getName() + "正在持有锁"); }finally { System.out.println(Thread.currentThread().getName() + "释放了锁"); lock.unlock(); } } public static void main(String[] args) { MyFairLock myFairLock = new MyFairLock(); Runnable runnable = () -> { System.out.println(Thread.currentThread().getName() + "启动"); myFairLock.fairLock(); }; Thread[] thread = new Thread[10]; for(int i = 0;i < 10;i++){ thread[i] = new Thread(runnable); } for(int i = 0;i < 10;i++){ thread[i].start(); } }}   上面不是讲过要给 ReentrantLock 传递一个参数的吗?你想,传 true 的时候是公平锁,那么反过来不就是非公平锁了?其他代码还用改吗?不需要了啊。   明白了吧,再来测试一下非公平锁的流程,看看是不是你想要的结果。   公平锁的加锁(lock)流程详解

  通常情况下,使用多线程访问公平锁的效率会非常低(通常情况下会慢很多),但是 ReentrantLock 会保证每个线程都会公平的持有锁,线程饥饿的次数比较小。锁的公平性并不能保证线程调度的公平性。

  此时如果你想了解更多的话,那么我就从源码的角度跟你聊聊如何 ReentrantLock 是如何实现这两种锁的。

  如上图所示,公平锁的加锁流程要比非公平锁的加锁流程简单,下面要聊一下具体的流程了,请小伙伴们备好板凳。

  acquire 方法的三条主要流程

  首先是第一条路线,tryAcquire 方法,顾名思义尝试获取,也就是说可以成功获取锁,也可以获取锁失败。

  使用 ctrl+左键 点进去是调用 AQS 的方法,但是 ReentrantLock 实现了 AQS 接口,所以调用的是 ReentrantLock 的 tryAcquire 方法;

  首先会取得当前线程,然后去读取当前锁的同步状态,还记得锁的四种状态吗?分别是 无锁、偏向锁、轻量级锁和重量级锁,如果你不是很明白的话,请参考博主这篇文章(不懂什么是锁?看看这篇你就明白了),如果判断同步状态是 0 的话,就证明是无锁的,参考下面这幅图( 1bit 表示的是是否偏向锁 )

  如果是无锁(也就是没有加锁),说明是第一次上锁,首先会先判断一下队列中是否有比当前线程等待时间更长的线程(hasQueuedPredecessors);然后通过 CAS 方法原子性的更新锁的状态,CAS 方法更新的要求涉及三个变量,currentValue(当前线程的值),expectedValue(期望更新的值),updateValue(更新的值),它们的更新如下

  if(currentValue == expectedValue){ currentValue = updateValue}

  CAS 通过 C 底层机制保证原子性,这个你不需要考虑它。如果既没有排队的线程而且使用 CAS 方法成功的把 0 -> 1 (偏向锁),那么当前线程就会获得偏向锁,记录获取锁的线程为当前线程。

  然后我们看 else if 逻辑,如果读取的同步状态是1,说明已经线程获取到了锁,那么就先判断当前线程是不是获取锁的线程,如果是的话,记录一下获取锁的次数 + 1,也就是说,只有同步状态为 0 的时候是无锁状态。如果当前线程不是获取锁的线程,直接返回 false。

  acquire 方法会先查看同步状态是否获取成功,如果成功则方法结束返回,也就是 !tryAcquire == false ,若失败则先调用 addWaiter 方法再调用 acquireQueued 方法

  然后看一下第二条路线 addWaiter

  这里首先把当前线程和 Node 的节点类型进行封装,Node 节点的类型有两种,EXCLUSIVE和 SHARED ,前者为独占模式,后者为共享模式,具体的区别我们会在 AQS 源码讨论,这里读者只需要知道即可。

  首先会进行 tail 节点的判断,有没有尾节点,其实没有头节点也就相当于没有尾节点,如果有尾节点,就会原子性的将当前节点插入同步队列中,再执行 enq 入队操作,入队操作相当于原子性的把节点插入队列中。

  如果当前同步队列尾节点为null,说明当前线程是第一个加入同步队列进行等待的线程。

  在看第三条路线 acquireQueued

  主要会有两个分支判断,首先会进行无限循环中,循环中每次都会判断给定当前节点的先驱节点,如果没有先驱节点会直接抛出空指针异常,直到返回 true。

  然后判断给定节点的先驱节点是不是头节点,并且当前节点能否获取独占式锁,如果是头节点并且成功获取独占锁后,队列头指针用指向当前节点,然后释放前驱节点。如果没有获取到独占锁,就会进入 shouldParkAfterFailedAcquire 和 parkAndCheckInterrupt 方法中,我们贴出这两个方法的源码

  shouldParkAfterFailedAcquire 方法主要逻辑是使用compareAndSetWaitStatus(pred, ws, Node.SIGNAL)使用CAS将节点状态由 INITIAL 设置成 SIGNAL,表示当前线程阻塞。当 compareAndSetWaitStatus 设置失败则说明 shouldParkAfterFailedAcquire 方法返回 false,然后会在 acquireQueued 方法中死循环中会继续重试,直至compareAndSetWaitStatus 设置节点状态位为 SIGNAL 时 shouldParkAfterFailedAcquire 返回 true 时才会执行方法 parkAndCheckInterrupt 方法。(这块在后面研究 AQS 会细讲)

  parkAndCheckInterrupt 该方法的关键是会调用 LookSupport.park 方法(关于LookSupport会在以后的文章进行讨论),该方法是用来阻塞当前线程。

  所以 acquireQueued 主要做了两件事情:如果当前节点的前驱节点是头节点,并且能够获取独占锁,那么当前线程能够获得锁该方法执行结束退出

  如果获取锁失败的话,先将节点状态设置成 SIGNAL,然后调用 LookSupport.park 方法使得当前线程阻塞。

  如果 !tryAcquire 和 acquireQueued 都为 true 的话,则打断当前线程。

  非公平锁的加锁(lock)流程详解

  非公平锁的加锁步骤和公平锁的步骤只有两处不同,一处是非公平锁在加锁前会直接使用 CAS 操作设置同步状态,如果设置成功,就会把当前线程设置为偏向锁的线程;一处是 CAS 操作失败执行 tryAcquire 方法,读取线程同步状态,如果未加锁会使用 CAS 再次进行加锁,不会等待 hasQueuedPredecessors 方法的执行,达到只要线程释放锁就会加锁的目的。

  lockInterruptibly 以可中断的方式获取锁

  lockInterruptibly 的中文意思为如果没有被打断,则获取锁。如果没有其他线程持有该锁,则获取该锁并立即返回,将锁保持计数设置为1。如果当前线程已经持有锁,那么此方法会立刻返回并且持有锁的数量会 + 1。如果锁是由另一个线程持有的,则出于线程调度目的,当前线程将被禁用,并处于休眠状态,直到发生以下两种情况之一。

  那么当前线程就会抛出InterruptedException 并且当前线程的中断状态会清除。

  首先会调用 acquireInterruptibly 这个方法,判断当前线程是否被中断,如果中断抛出异常,没有中断则判断公平锁/非公平锁 是否已经获取锁,如果没有获取锁(tryAcquire 返回 false)则调用 doAcquireInterruptibly 方法,这个方法和 acquireQueued 方法没什么区别,就是线程在等待状态的过程中,如果线程被中断,线程会抛出异常。

  tryLock 尝试加锁

  仅仅当其他线程没有获取这把锁的时候获取这把锁,tryLock 的源代码和非公平锁的加锁流程基本一致。

  tryLock 超时获取锁

  ReentrantLock除了能以中断的方式去获取锁,还可以以超时等待的方式去获取锁,所谓超时等待就是线程如果在超时时间内没有获取到锁,那么就会返回false,而不是一直死循环获取。可以使用 tryLock 和 tryLock(timeout, unit)) 结合起来实现公平锁,像这样:

  if (lock.tryLock() || lock.tryLock(timeout, unit)) {...}

  如果超过了指定时间,则返回值为 false。如果时间小于或者等于零,则该方法根本不会等待。

  首先需要了解一下 TimeUnit 工具类,TimeUnit 表示给定粒度单位的持续时间,并且提供了一些用于时分秒跨单位转换的方法,通过使用这些方法进行定时和延迟操作。

  toNanos 用于把 long 型表示的时间转换成为纳秒,然后判断线程是否被打断,如果没有打断,则以公平锁/非公平锁 的方式获取锁,如果能够获取返回true,获取失败则调用doAcquireNanos方法使用超时等待的方式获取锁。在超时等待获取锁的过程中,如果等待时间大于应等待时间,或者应等待时间设置不合理的话,返回 false。

  unlock 解锁流程

  unlock 和 lock 是一对情侣,它们分不开彼此,在调用 lock 后必须通过 unlock 进行解锁。如果当前线程持有锁,在调用 unlock 后,count 计数将减少。如果保持计数为0就会进行解锁。如果当前线程没有持有锁,在调用 unlock 会抛出 IllegalMonitorStateException 异常。

  在有了上面阅读源码的经历后,相信你会很快明白这段代码的意思,锁的释放不会区分公平锁还是非公平锁,主要的判断逻辑就是 tryRelease 方法,getState 方法会取得同步锁的重入次数,如果是获取了偏向锁,那么可能会多次获取,state 的值会大于 1,这时候 c 的值 > 0 ,返回 false,解锁失败。如果 state = 1,那么 c = 0,再判断当前线程是否是独占锁的线程,释放独占锁,返回 true,当 head 指向的头结点不为 null,并且该节点的状态值不为0的话才会执行 unparkSuccessor 方法,再进行锁的获取。

  ReentrantLock 其他方法isHeldByCurrentThread & getHoldCount

  在多线程同时访问时,ReentrantLock 由最后一次成功锁定的线程拥有,当这把锁没有被其他线程拥有时,线程调用 lock() 方法会立刻返回并成功获取锁。如果当前线程已经拥有锁,这个方法会立刻返回。可以通过 isHeldByCurrentThread 和 getHoldCount 来进行检查。

  来看 isHeldByCurrentThread 方法

  public boolean isHeldByCurrentThread() { return sync.isHeldExclusively();}

  根据方法名可以略知一二,是否被当前线程持有,它用来询问锁是否被其他线程拥有,这个方法和 Thread.holdsLock(Object) 方法内置的监视器锁相同,而 Thread.holdsLock(Object) 是 Thread 类的静态方法,是一个 native 类,它表示的意思是如果当前线程在某个对象上持有 monitor lock(监视器锁) 就会返回 true。这个类没有实际作用,仅仅用来测试和调试所用。例如:

  private ReentrantLock lock = new ReentrantLock();public void lock(){ assert lock.isHeldByCurrentThread();}

  这个方法也可以确保重入锁能够表现出不可重入的行为:

  private ReentrantLock lock = new ReentrantLock();public void lock(){ assert !lock.isHeldByCurrentThread(); lock.lock(); try { // 执行业务代码 }finally { lock.unlock(); }}

  如果当前线程持有锁则 lock.isHeldByCurrentThread() 返回 true,否则返回 false。

  我们在了解它的用法后,看一下它内部是怎样实现的,它内部只是调用了一下 sync.isHeldExclusively(),sync 是 ReentrantLock 的一个静态内部类,基于 AQS 实现,而 AQS 它是一种抽象队列同步器,是许多并发实现类的基础,例如 ReentrantLock/Semaphore/CountDownLatch。sync.isHeldExclusively() 方法如下

  protected final boolean isHeldExclusively() { return getExclusiveOwnerThread() == Thread.currentThread();}

  此方法会在拥有锁之前先去读一下状态,如果当前线程是锁的拥有者,则不需要检查。

  getHoldCount()方法和isHeldByCurrentThread 都是用来检查线程是否持有锁的方法,不同之处在于 getHoldCount() 用来查询当前线程持有锁的数量,对于每个未通过解锁操作匹配的锁定操作,线程都会保持锁定状态,这个方法也通常用于调试和测试,例如

  private ReentrantLock lock = new ReentrantLock();public void lock(){ assert lock.getHoldCount() == 0; lock.lock(); try { // 执行业务代码 }finally { lock.unlock(); }}

  这个方法会返回当前线程持有锁的次数,如果当前线程没有持有锁,则返回0。

  newCondition 创建 ConditionObject 对象

  ReentrantLock 可以通过 newCondition 方法创建 ConditionObject 对象,而 ConditionObject 实现了 Condition 接口,关于 Condition 的用法我们后面再讲。

  isLocked 判断是否锁定

  查询是否有任意线程已经获取锁,这个方法用来监视系统状态,而不是用来同步控制,很简单,直接判断 state 是否等于0。

  isFair 判断是否是公平锁的实例

  这个方法也比较简单,直接使用 instanceof 判断是不是 FairSync 内部类的实例:

  public final boolean isFair() { return sync instanceof FairSync;}

  getOwner 判断锁拥有者

  判断同步状态是否为0,如果是0,则没有线程拥有锁,如果不是0,直接返回获取锁的线程。

  final Thread getOwner() { return getState() == 0 ? null : getExclusiveOwnerThread();}

  hasQueuedThreads 是否有等待线程

  判断是否有线程正在等待获取锁,如果头节点与尾节点不相等,说明有等待获取锁的线程。

  public final boolean hasQueuedThreads() { return head != tail;}

  isQueued 判断线程是否排队

  判断给定的线程是否正在排队,如果正在排队,返回 true。这个方法会遍历队列,如果找到匹配的线程,返回true

  public final boolean isQueued(Thread thread) { if (thread == null) throw new NullPointerException(); for (Node p = tail; p != null; p = p.prev) if (p.thread == thread) return true; return false;}

  getQueueLength 获取队列长度

  此方法会返回一个队列长度的估计值,该值只是一个估计值,因为在此方法遍历内部数据结构时,线程数可能会动态变化。 此方法设计用于监视系统状态,而不用于同步控制。

  public final int getQueueLength() { int n = 0; for (Node p = tail; p != null; p = p.prev) { if (p.thread != null) ++n; } return n;}

  getQueuedThreads 获取排队线程

  返回一个包含可能正在等待获取此锁的线程的集合。 因为实际的线程集在构造此结果时可能会动态更改,所以返回的集合只是一个大概的列表集合。 返回的集合的元素没有特定的顺序。

  public final Collection getQueuedThreads() { ArrayList list = new ArrayList(); for (Node p = tail; p != null; p = p.prev) { Thread t = p.thread; if (t != null) list.add(t); } return list;}

  因此要熟练掌握ReentrantLock需要不断尝试和写代码的,这样可以巩固自己的基础,要了解更多请关注学步园。

抱歉!评论已关闭.