现在的位置: 首页 > 综合 > 正文

C51_单片机开发_XBYTE的使用

2012年11月29日 ⁄ 综合 ⁄ 共 3031字 ⁄ 字号 评论关闭

【实例】

         百度结果:这个主要是在用C51的P0,P2口做外部扩展时使用,其中XBYTE [0x0002],P2口对应于地址高位,P0口对应于地址低位。一般P2口用于控制信号,P0口作为数据通道。

        如:P2.7接WR,P2.6接RD,P2.5接CS,那么就可以确定个外部RAM的一个地址,想往外部RAM的一个地址写一个字 节时,地址可以定为XBYTE [0x4000],其中WR,CS为低,RD为高,那就是高位的4,当然其余的可以根据情况自己定,然后通过
XBYTE [0x4000] = 57。这赋值语句,就可以把57写到外部RAM的0x4000处了,此地址对应一个字节。

【汇总】

1、The XBYTE macro accesses individual bytes in the external data memory of the 8051. You may use this macro in your programs as follows:

#include <absacc.h>  
. . . 
rval = XBYTE [0x0002];
 XBYTE [0x0002] = 57;
 . . .

This example reads and writes the contents of the byte in external data memory at address 0002h.

The range of valid index values for this macro is 0-65535.

(以上为官方定义)

2、在<absacc.h>中的定义是

#define XBYTE ((unsigned char volatile xdata *) 0)

可以使用XBYTE去访问外部的RAM,也可以用XBYTE去访问扩展的I/0设备

注意:这里是利用的英特尔总线进行访问的,那么就会有时序的问题,在C语言中,这些都帮你做完了,所以无需考虑

3、关于I/O的控制如下,低字节表示的是P0端口,高字节表示的是P2端口。P2端口通常作为控制端口,而P0通常作为数据端口

eg:XBYTE[0x8800] = buz_stu;

其中用P2做控制,P0的数据就是buz_stu的状态

 

【疑问和解答

一下摘自论坛网友的问答:

问:

在一般的读写外部RAM的程序中,经常看到这样的句子:

    XBYTE[address]=data   写 数据

    data=XBYTE[address]   读数据

但是我想问的是,为什么用了XBYTE后,就不用顾及 其时序了呢?

就是说,读写数据的时候,WR和RD怎么都不用用程序去控制了呢?

参考了很多读写外部RAM的程序,都找不 到其控制WR和RD控制线的语句

哪位大侠能帮忙解释一下这是为什么嘛?

最好还能说说XBYTE具体的用法.....

答:
外部总线,

1外部总线由3组总线组成,数据 地址 控制,我们常常一般就叫他外 部总线,既然是有3组不同的信号,那么他们是怎么协调工作的呢?一般情况CPU有特殊的外部数据访问指令如你这里讲51的MOVX指令(在C语言中他会编 译成这个指令)在执行这个指令的时候3组线是协调工作

mov dptr,#1000h

mov a,#55h

movx @dptr,a

上面3调语句的C语言可以表示如下

#define  W_DATA  XBYTE[0x1000]

W_DATA=0X55;

在 使用外部总线的时候,数据 地址和控制信号是直接按照规定的时序输出高低电平的,所以不用你管,当然你必须要满足时序工作

一下摘自网友博客文章:

如何理解#define XBYTE ((unsigned char volatile xdata *

8051 特有的内存型态 

code    以 MOVC @A+DPTR 读取的程序内存
data    可以直接存取的内部数据存储器
idata    以 Mov @Rn 存取的内部数据存储器
bdata    可以位寻址(Bit Addressable)的内部存储器
xdata    以 MOVX @DPTR 存取的外部数据存储器
pdata    以 MOVX @Rn 存取的外部数据存储器

特殊资料型态 

bit    一般位(bit)变量
sbit    绝对寻址的位(bit)变量
语法
sbit    my_flag    =    location;    (location 范围从 0x00 ~ 0x7F)
范例
sbit    EA =    0xAF;
或是配合 bdata 宣告的位(bit)变量
char    bdata        my_flags;
sbit    flag0 =      my_flags ^ 0;
(注意 sbit 前不可以加 static)

sfr    特殊功能缓存器(Special Function Register)
语法
sfr    my_sfr    =    location;    (location 范围从 0x80 ~ 0xFF)
范例
sfr    P0    =    0x80;
指定绝对地址的变量 
在单一模 块内可以使用下面的语法宣告
[memory_space]    type    variable_name    _at_    location
范例
pdata        char    my_pdata    _at_    0x80;
如果该变 量必须为多个模块所使用(Global Variable)则以
抽象指针(Abstract Pointer)的方式在标头档(Header File)定义较为方便。

#define    variable_name    *((data_type *)        location)
范例
#define    my_pdata    *((char pdata *)    0x80)
(注 意 char 与 pdata 的顺序)
ABSACC.H 提供了下列方便的宏(Macro)定义。 
#define CBYTE ((unsigned char volatile code *) 0)
#define DBYTE ((unsigned char volatile data *) 0)
#define PBYTE ((unsigned char volatile pdata *) 0)
#define XBYTE ((unsigned char volatile xdata *) 0)
#define CWORD ((unsigned int volatile code *) 0)
#define DWORD ((unsigned int volatile data *) 0)
#define PWORD ((unsigned int volatile pdata *) 0)
#define XWORD ((unsigned int volatile xdata *) 0)

隐藏的初始化程序 
80C51 在电源重置后(Power On Reset)所执行的第一个程序模块并不是使用者的主程序 
main(),而是一个隐藏在 KEIL-C51 标准链接库中称为 startup.a51 的程序模块。
startup.a51 的主要工作是把包含 idata、xdata、pdata 在内的内存区块清除为 0,并
且初始化递归指针。接着 startup.a51 被执行的仍然是一个隐藏在 KEIL-C51 标准链接库
中 称为 init.a51 的程序模块。而 init.a51 的主要工作则是初始化具有非零初始值设定的
变量。 
在完成上述的初始化程序 之后,80C51 的控制权才会交给 main() 开始执行使用者的程序。
#define XBYTE ((unsigned char volatile xdata *) 0)
定义    XBYTE 为 指向 xdata 地址空间unsigned char 数据类型的指针,指针值为0
这样,可以直接用XBYTE[0xnnnn]或*(XBYTE+0xnnnn)访问外部RAM了

抱歉!评论已关闭.