现在的位置: 首页 > 综合 > 正文

Linux环境进程间通信系列(一):管道及有名管道

2013年10月18日 ⁄ 综合 ⁄ 共 2812字 ⁄ 字号 评论关闭

在本系列序中作者概述了 linux 进程间通信的几种主要手段。其中管道和有名管道是最早的进程间通信机制之一,管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。 认清管道和有名管道的读写规则是在程序中应用它们的关键,本文在详细讨论了管道和有名管道的通信机制的基础上,用实例对其读写规则进行了程序验证,这样做有利于增强读者对读写规则的感性认识,同时也提供了应用范例。

 

管道概述及相关API应用

1.1 管道相关的关键概念

管道是Linux支持的最初Unix IPC形式之一,具有以下特点:

  • 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;

  • 只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程);

  • 单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。

  • 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。

1.2管道的创建:

 

#include <unistd.h>

int pipe(int fd[2])

 

该函数创建的管道的两端处于一个进程中间,在实际应用中没有太大意义,因此,一个进程在由pipe()创建管道后,一般再fork一个子进程,然后通过管道实现父子进程间的通信(因此也不难推出,只要两个进程中存在亲缘关系,这里的亲缘关系指的是具有共同的祖先,都可以采用管道方式来进行通信)。

1.3管道的读写规则:

管道两端可分别用描述字fd[0]以及fd[1]来描述,需要注意的是,管道的两端是固定了任务的。即一端只能用于读,由描述字fd[0]表示,称其为管道读端;另一端则只能用于写,由描述字fd[1]来表示,称其为管道写端。如果试图从管道写端读取数据,或者向管道读端写入数据都将导致错误发生。一般文件的I/O函数都可以用于管道,如closereadwrite等等。

从管道中读取数据:

  • 如果管道的写端不存在,则认为已经读到了数据的末尾,读函数返回的读出字节数为0

  • 当管道的写端存在时,如果请求的字节数目大于PIPE_BUF,则返回管道中现有的数据字节数,如果请求的字节数目不大于PIPE_BUF,则返回管道中现有数据字节数(此时,管道中数据量小于请求的数据量);或者返回请求的字节数(此时,管道中数据量不小于请求的数据量)。注:(PIPE_BUFinclude/linux/limits.h中定义,不同的内核版本可能会有所不同。Posix.1要求PIPE_BUF至少为512字节,red hat 7.2中为4096)。

关于管道的读规则验证:

 

 /**************

 * readtest.c *

 **************/

#include <unistd.h>

#include <sys/types.h>

#include <errno.h>

main()

{

      int pipe_fd[2];

      pid_t pid;

      char r_buf[100];

      char w_buf[4];

      char* p_wbuf;

      int r_num;

      int cmd;

     

      memset(r_buf,0,sizeof(r_buf));

      memset(w_buf,0,sizeof(r_buf));

      p_wbuf=w_buf;

      if(pipe(pipe_fd)<0)

      {

            printf("pipe create error/n");

            return -1;

      }

     

      if((pid=fork())==0)

      {

            printf("/n");

            close(pipe_fd[1]);

            sleep(3);//确保父进程关闭写端

          r_num=read(pipe_fd[0],r_buf,100);

printf(     "read num is %d   the data read from the pipe is %d/n",r_num,atoi(r_buf));

           

            close(pipe_fd[0]);

            exit();

      }

      else if(pid>0)

      {

      close(pipe_fd[0]);//read

      strcpy(w_buf,"111");

      if(write(pipe_fd[1],w_buf,4)!=-1)

            printf("parent write over/n");

      close(pipe_fd[1]);//write

            printf("parent close fd[1] over/n");

      sleep(10);

      }    

}

 /**************************************************

 * 程序输出结果:

 * parent write over

 * parent close fd[1] over

 * read num is 4   the data read from the pipe is 111

 * 附加结论:

 * 管道写端关闭后,写入的数据将一直存在,直到读出为止.

 ****************************************************/

 

 

向管道中写入数据:

  • 向管道中写入数据时,linux将不保证写入的原子性,管道缓冲区一有空闲区域,写进程就会试图向管道写入数据。如果读进程不读走管道缓冲区中的数据,那么写操作将一直阻塞。
    注:只有在管道的读端存在时,向管道中写入数据才有意义。否则,向管道中写入数据的进程将收到内核传来的SIFPIPE信号,应用程序可以处理该信号,也可以忽略(默认动作则是应用程序终止)。

对管道的写规则的验证1:写端对读端存在的依赖性

 

#include <unistd.h>

#include <sys/types.h>

main()

{

      int pipe_fd[2];

      pid_t pid;

      char r_buf[4];

      char* w_buf;

      int writenum;

      int cmd;

     

      memset(r_buf,0,sizeof(r_buf));

      if(pipe(pipe_fd)<0)

      {

            printf("pipe create error/n");

抱歉!评论已关闭.