现在的位置: 首页 > 综合 > 正文

Eboot 中给nandflash分区实现

2013年11月02日 ⁄ 综合 ⁄ 共 22650字 ⁄ 字号 评论关闭

提到分区就不得不提到MBR ,不得不提到分区表。

什么是MBR

硬盘的0 柱面、0 磁头、1 扇区称为主引导扇区,NANDFLASH 由BLOCK 和Sector 组成,所以NANDFLASH 的第0 BLOCK ,第1 Sector 为主引导扇区,FDISK 程序写到该扇区的内容称为主引导记录(MBR )。该记录占用512 个字节,它用于硬盘启动时将系统控制权交给用户指定的,并在分区表中登记了的某个操作系统区。

 

MBR 的组成
一个扇区的硬盘主引导记录MBR 由如图6-15 所示的4 个部分组成。
· 主引导程序(偏移地址0000H--0088H ),它负责从活动分区中装载,并运行系统引导程序。
· 出错信息数据区,偏移地址0089H--00E1H 为出错信息,00E2H--01BDH 全为0 字节。
· 分区表(DPT,Disk Partition Table )含4 个分区项,偏移地址01BEH--01FDH, 每个分区表项长16 个字节,共64 字节为分区项1 、分区项2 、分区项3 、分区项4 。
· 结束标志字,偏移地址01FE--01FF 的2 个字节值为结束标志55AA, 如果该标志错误系统就不能启动。

0000-0088

 
 Master Boot Record

主引导程序
 主引导

程序
 
0089-01BD
 出错信息数据区
 数据区
 
01BE-01CD
 分区项1 (16 字节)
 

分区表

 
 
01CE-01DD
 分区项2 (16 字节)
 
01DE-01ED
 分区项3 (16 字节)
 
01EE-01FD
 分区项4 (16 字节)
 
01FE
 55
 结束标志
 
01FF
 AA
 

图6-15 MBR 的组成结构图

MBR 中的分区信息结构

    占用512 个字节的MBR 中,偏移地址01BEH--01FDH 的64 个字节,为4 个分区项内容(分区信息表)。它是由磁盘介质类型及用户在使用 FDISK 定义分区说确定的。在实际应用中,FDISK 对一个磁盘划分的主分区可少于4 个,但最多不超过4 个。每个分区表的项目是16 个字节,其内容含义 如表6-19 所示。
表6-19 分区项表(16 字节)内容及含义

 

存贮字节位
 内容及含义
 
第1 字节
 引导标志。若值为80H 表示活动分区,若值为00H 表示非活动分区。
 
第2 、3 、4 字节
 本分区的起始磁头号、扇区号、柱面号。其中:

    磁头号—— 第2 字节;

    扇区号—— 第3 字节的低6 位;

    柱面号—— 为第3 字节高2 位+ 第4 字节8 位。
 
第5 字节
 分区类型符。

    00H—— 表示该分区未用(即没有指定);

    06H——FAT16 基本分区;

    0BH——FAT32 基本分区;

    05H—— 扩展分区;

    07H——NTFS 分区;

    0FH—— (LBA 模式)扩展分区(83H 为Linux 分区等)。
 
第6 、7 、8 字节
 本分区的结束磁头号、扇区号、柱面号。其中:

    磁头号—— 第6 字节;

    扇区号—— 第7 字节的低6 位;

    柱面号—— 第7 字节的高2 位+ 第8 字节。
 
第9 、10 、11 、12 字节
 本分区之前已用了的扇区数。
 
第13 、14 、15 、16 字节
 本分区的总扇区数。
 

 

EBOOT 中对NAND 分区主要代码,eboot 目录下的fmd.cpp 文件,与NAND 驱动基本相同,所以,要对NAND 进行分区,就得对NAND 驱动非常熟悉。透彻了解。然后就是
E:/WINCE500/PUBLIC/COMMON/OAK/DRIVERS/ETHDBG/BOOTPART/bootpart.cpp 文件了。该文件主要通过调用NANDFLASH 的读写操作来写入MBR ,也是今天主要的分析对象。

 

主要函数。

 

/*  BP_OpenPartition

 *

 *  Opens/creates a partition depending on the creation flags.  If it is opening

 *  and the partition has already been opened, then it returns a handle to the

 *  opened partition.  Otherwise, it loads the state information of that partition

 *  into memory and returns a handle. 

 *

 *  ENTRY

 *      dwStartSector - Logical sector to start the partition.  NEXT_FREE_LOC if none

 *          specified.  Ignored if opening existing partition.

 *      dwNumSectors - Number of logical sectors of the partition.  USE_REMAINING_SPACE

 *          to indicate to take up the rest of the space on the flash for that partition (should

 *          only be used when creating extended partitions).  This parameter is ignored

 *          if opening existing partition.

 *      dwPartType - Type of partition to create/open.

 *      fActive - TRUE indicates to create/open the active partition.  FALSE for

 *          inactive.

 *      dwCreationFlags - PART_CREATE_NEW to create only.  Fail if it already

 *          exists.  PART_OPEN_EXISTING to open only.  Fail if it doesn't exist.

 *          PART_OPEN_ALWAYS creates if it does not exist and opens if it

 *          does exist.

 *

 *  EXIT

 *      Handle to the partition on success.  INVALID_HANDLE_VALUE on error.

 */

HANDLE BP_OpenPartition(DWORD dwStartSector, DWORD dwNumSectors, DWORD dwPartType, BOOL fActive, DWORD dwCreationFlags)

 

注:示例代码为本人EBOOT 中分区实现源码(WINCE5.0+S3C2440+128MNAND,MBR写在第4个BLOCK,分一个BINFS格式分区和一个FAT 格式分区 )。

 

BOOL WriteRegionsToBootMedia(DWORD dwImageStart, DWORD dwImageLength, DWORD dwLaunchAddr)

在把SDRAM 中的NK 烧写到NAND 中去之前,先创建一个BINFS 分区。

hPart = BP_OpenPartition( (NK_START_BLOCK+1)*PAGES_PER_BLOCK,  // next block of MBR     BINFS_BLOCK*PAGES_PER_BLOCK,//SECTOR_TO_BLOCK_SIZE(FILE_TO_SECTOR_SIZE(dwBINFSPartLength))*PAGES_PER_BLOCK,  //align to block

                              PART_BINFS,

                              TRUE,

                              PART_OPEN_ALWAYS);

第一个参数分区的起始sector 为(NK_START_BLOCK+1)*PAGES_PER_BLOCK ,

第二个参数分区的结束 sector 为BINFS_BLOCK*PAGES_PER_BLOCK ,

第三个参数分区的格式为PART_BINFS ,即BINFS 格式,

第四个参数指示该分区为活动分区,fActive = TURE ,

第五个参数PART_OPEN_ALWAYS 指示如果分区不存在就创建该分区,存在就OPEN 该分区,返回分区句柄。

 

HANDLE BP_OpenPartition(DWORD dwStartSector, DWORD dwNumSectors, DWORD dwPartType, BOOL fActive, DWORD dwCreationFlags)

{

        DWORD dwPartIndex;

        BOOL fExists;

 

        ASSERT (g_pbMBRSector);

       

        if (!IsValidMBR()) {

            DWORD dwFlags = 0;

          

            //fly

             RETAILMSG(1, (TEXT("BP_OpenPartition:: dwStartSector=0x%x ,dwNumSectors= 0x%x.,dwPartType = 0x%x/r/n"), dwStartSector, dwNumSectors,dwPartType));

            if (dwCreationFlags == PART_OPEN_EXISTING) {

                RETAILMSG(1, (TEXT("OpenPartition: Invalid MBR.  Cannot open existing partition 0x%x./r/n"), dwPartType));

                return INVALID_HANDLE_VALUE;

            }

           

            RETAILMSG(1, (TEXT("OpenPartition: Invalid MBR.  Formatting flash./r/n")));

            if (g_FlashInfo.flashType == NOR) {

                dwFlags |= FORMAT_SKIP_BLOCK_CHECK;

            }

            //fly

             RETAILMSG(1, (TEXT("BP_LowLevelFormat: g_pbMBRSector=0x%x, g_dwMBRSectorNum= 0x%x./r/n"), *g_pbMBRSector, g_dwMBRSectorNum));

            BP_LowLevelFormat (SECTOR_TO_BLOCK(dwStartSector), SECTOR_TO_BLOCK(dwNumSectors), dwFlags);

            dwPartIndex = 0;

            fExists = FALSE;

        }

        else {

            fExists = GetPartitionTableIndex(dwPartType, fActive, &dwPartIndex);       

        }

 

        RETAILMSG(1, (TEXT("OpenPartition: Partition Exists=0x%x for part 0x%x./r/n"), fExists, dwPartType));

        if (fExists) {

            // Partition was found. 

            if (dwCreationFlags == PART_CREATE_NEW)

                return INVALID_HANDLE_VALUE;

           

            if (g_partStateTable[dwPartIndex].pPartEntry == NULL) {

                // Open partition.  If this is the boot section partition, then file pointer starts after MBR

                g_partStateTable[dwPartIndex].pPartEntry = (PPARTENTRY)(g_pbMBRSector + PARTTABLE_OFFSET + sizeof(PARTENTRY)*dwPartIndex);

                g_partStateTable[dwPartIndex].dwDataPointer = 0;

            } 

           if ( dwNumSectors > g_partStateTable[dwPartIndex].pPartEntry->Part_TotalSectors )

              return CreatePartition (dwStartSector, dwNumSectors, dwPartType, fActive, dwPartIndex);

           else         

                   return (HANDLE)&g_partStateTable[dwPartIndex];           

        }

        else {

 

            // If there are already 4 partitions, or creation flag specified OPEN_EXISTING, fail.

            if ((dwPartIndex == NUM_PARTS) || (dwCreationFlags == PART_OPEN_EXISTING))

                return INVALID_HANDLE_VALUE;

 

            // Create new partition

            return CreatePartition (dwStartSector, dwNumSectors, dwPartType, fActive, dwPartIndex);

        }

 

        return INVALID_HANDLE_VALUE;

       

}

进入函数,首先做的事就是检测MBR 的有效性。通过函数IsValidMBR ()实现。

检测MBR 的有效性,首先要知道MBR 保存在哪里,前面说过NANDFLASH 的第0 BLOCK ,第1 Sector 为主引导扇区,也就是MBR ,但是NAND 如果被当作启动芯片,○地址一般被BOOTLOADER 代码占据,MBR 只有放在后面的BLOCK 中。所以我把第0 个BLOCK 放NBOOT ,第1 个BLOCK 放TOC ,第2 个BLOCK 放EBOOT ,第3 个BLOCK 保留,第4 个BLOCK 就放MBR 。

static BOOL IsValidMBR()

{

    // Check to see if the MBR is valid

    // MBR block is always located at logical sector 0

    g_dwMBRSectorNum = GetMBRSectorNum();       

 

    RETAILMSG (1, (TEXT("IsValidMBR: MBR sector = 0x%x/r/n"), g_dwMBRSectorNum));

  

    if ((g_dwMBRSectorNum == INVALID_ADDR) || !FMD_ReadSector (g_dwMBRSectorNum, g_pbMBRSector, NULL, 1)) {

       RETAILMSG (1, (TEXT("IsValidMBR-----return FALSE-------------------/r/n")));

        return FALSE; 

    }   

    return ((g_pbMBRSector[0] == 0xE9) &&

         (g_pbMBRSector[1] == 0xfd) &&

         (g_pbMBRSector[2] == 0xff) &&

         (g_pbMBRSector[SECTOR_SIZE_FS-2] == 0x55) &&

         (g_pbMBRSector[SECTOR_SIZE_FS-1] == 0xAA));

IsValidMBR() 实现的第一行就是给全局变量g_dwMBRSectorNum 赋值,显而易见,g_dwMBRSectorNum 就是指示保存MBR 的那个Sector 了。

g_dwMBRSectorNum = GetMBRSectorNum();   // 是获得保存MBR 的那个Sector

static DWORD GetMBRSectorNum ()

{

    DWORD dwBlockNum = 3, dwSector = 0;

    SectorInfo si;

       

    while (dwBlockNum < g_FlashInfo.dwNumBlocks) {

 

        if (!IS_BLOCK_UNUSABLE (dwBlockNum)) {

            dwSector = dwBlockNum * g_FlashInfo.wSectorsPerBlock;

           

            if (!FMD_ReadSector (dwSector, NULL, &si, 1)) {

                RETAILMSG(1, (TEXT("GetMBRSectorNum: Could not read sector 0x%x./r/n"), dwSector));

                return INVALID_ADDR;

            }

            // Check to see if logical sector number is 0

            if (si.dwReserved1 == 0) {

              //RETAILMSG(1,(TEXT("dwBlockNum=%d/r/n"),dwBlockNum));

                return dwSector;

            }

        }

 

        dwBlockNum++;

 

    }

 

    return INVALID_ADDR;

}

这里dwBlockNum 直接给了个3 ,因为NBOOT ,TOC ,EBOOT 已经把前三个BLOCK 用了。所以MBR 的选择直接排除了前三个BLOCK 了。

#define IS_BLOCK_UNUSABLE(blockID) ((FMD_GetBlockStatus (blockID) & (BLOCK_STATUS_BAD|BLOCK_STATUS_RESERVED)) > 0)

然后确定BLOCK 是否可使用的BLOCK ,最后通si.dwReserved1 == 0 来判断是不是选择这个Sector 来保存MBR 。

IsValidMBR ()中还有一个重要的结构就是g_pbMBRSector 数组,它就是MBR 了。

函数返回时,MBR 必须符合下列记录。

    return ((g_pbMBRSector[0] == 0xE9) &&

         (g_pbMBRSector[1] == 0xfd) &&

         (g_pbMBRSector[2] == 0xff) &&

         (g_pbMBRSector[SECTOR_SIZE_FS-2] == 0x55) &&

         (g_pbMBRSector[SECTOR_SIZE_FS-1] == 0xAA));

可以看到只有开始三个字节为0XE9,FD,FF ,当然,还有熟悉的结束标志符0X55AA 。

 

如果没有检测到MBR ,则先对NANDFLASH 进行低级格式化。BP_LowLevelFormat (SECTOR_TO_BLOCK(dwStartSector), SECTOR_TO_BLOCK(dwNumSectors), dwFlags); 再创建分区,CreatePartition (dwStartSector, dwNumSectors, dwPartType, fActive, dwPartIndex); 。

 

BOOL BP_LowLevelFormat(DWORD dwStartBlock, DWORD dwNumBlocks, DWORD dwFlags)

{

    dwNumBlocks = min (dwNumBlocks, g_FlashInfo.dwNumBlocks);

 

    RETAILMSG(1,(TEXT("fly::Enter LowLevelFormat [0x%x, 0x%x]./r/n"), dwStartBlock,dwNumBlocks));// dwStartBlock + dwNumBlocks - 1));

 

    // Erase all the flash blocks.

    if (!EraseBlocks(dwStartBlock, dwNumBlocks, dwFlags))

        return(FALSE);

 

    // Determine first good starting block

    while (IS_BLOCK_UNUSABLE (dwStartBlock) && dwStartBlock < g_FlashInfo.dwNumBlocks) {

        dwStartBlock++;

    }

 

    if (dwStartBlock >= g_FlashInfo.dwNumBlocks) {

        RETAILMSG(1,(TEXT("BP_LowLevelFormat: no good blocks/r/n")));       

        return FALSE;

    }

 

    // MBR goes in the first sector of the starting block.  This will be logical sector 0.

    g_dwMBRSectorNum = dwStartBlock * g_FlashInfo.wSectorsPerBlock;

 

    RETAILMSG(1,(TEXT("fly:g_dwMBRSectorNum=%d/r/n"),g_dwMBRSectorNum));

 

    // Create an MBR.

    CreateMBR();

    return(TRUE);

}

在对NANDFLASH 进行低格时,主要对坏块的处理。if (!EraseBlocks(dwStartBlock, dwNumBlocks, dwFlags)) 检测每一个Sector ,每个BLOCK 只要有一个Sector 不能读写这个块都会被处理成坏块,这样才能保证系统的稳定性。在函数的最后调用了    CreateMBR(); 来创建一个MBR 。static BOOL CreateMBR()

{

    // This, plus a valid partition table, is all the CE partition manager needs to recognize

    // the MBR as valid. It does not contain boot code.

 

    memset (g_pbMBRSector, 0xff, g_FlashInfo.wDataBytesPerSector);

    g_pbMBRSector[0] = 0xE9;

    g_pbMBRSector[1] = 0xfd;

    g_pbMBRSector[2] = 0xff;

    g_pbMBRSector[SECTOR_SIZE_FS-2] = 0x55;

    g_pbMBRSector[SECTOR_SIZE_FS-1] = 0xAA;

 

    // Zero out partition table so that mspart treats entries as empty.

    memset (g_pbMBRSector+PARTTABLE_OFFSET, 0, sizeof(PARTENTRY) * NUM_PARTS);

 

    return WriteMBR();

 

}  当然。因为还没有进行分区,这里写入的MBR 分区表部分是空的。static BOOL WriteMBR()

{

    DWORD dwMBRBlockNum = g_dwMBRSectorNum / g_FlashInfo.wSectorsPerBlock;

 

    //dwMBRBlockNum = 1 ;

 

    RETAILMSG(1, (TEXT("WriteMBR: MBR block = 0x%x,g_dwMBRSectorNum = 0x%x./r/n"), dwMBRBlockNum,g_dwMBRSectorNum));

 

    memset (g_pbBlock, 0xff, g_dwDataBytesPerBlock);

    memset (g_pSectorInfoBuf, 0xff, sizeof(SectorInfo) * g_FlashInfo.wSectorsPerBlock);

       

    // No need to check return, since a failed read means data hasn't been written yet.

    ReadBlock (dwMBRBlockNum, g_pbBlock, g_pSectorInfoBuf);

 

    if (!FMD_EraseBlock (dwMBRBlockNum)) {

        RETAILMSG (1, (TEXT("CreatePartition: error erasing block 0x%x/r/n"), dwMBRBlockNum));

        return FALSE;

    }

 

    memcpy (g_pbBlock + (g_dwMBRSectorNum % g_FlashInfo.wSectorsPerBlock) * g_FlashInfo.wDataBytesPerSector, g_pbMBRSector, g_FlashInfo.wDataBytesPerSector);

    g_pSectorInfoBuf->bOEMReserved &= ~OEM_BLOCK_READONLY;

    g_pSectorInfoBuf->wReserved2 &= ~SECTOR_WRITE_COMPLETED;

    g_pSectorInfoBuf->dwReserved1 = 0;

 

    RETAILMSG(1, (TEXT("fly::WriteMBR: MBR block = 0x%x./r/n"), dwMBRBlockNum));

 

    if (!WriteBlock (dwMBRBlockNum, g_pbBlock, g_pSectorInfoBuf)) {

        RETAILMSG (1, (TEXT("CreatePartition: could not write to block 0x%x/r/n"), dwMBRBlockNum));

        return FALSE;

    }

 

    return TRUE;

   

}

在WriteMBR() 函数中,就写入了判断MBR 的一些标志到BLOCK ,    g_pSectorInfoBuf->bOEMReserved &= ~OEM_BLOCK_READONLY;

    g_pSectorInfoBuf->wReserved2 &= ~SECTOR_WRITE_COMPLETED;

    g_pSectorInfoBuf->dwReserved1 = 0;

Wince 系统启动时,具体是NANDFLASH 驱动加载成功后,MOUNT 文件系统到NANDFLASH 之前,也会通过读取这些SectorInfo 来得到MBR 保存的BLOCK ,进而读取MBR ,获得分区信息,从而把各分区MOUNT 到相应文件系统。格式化完成,MBR 也写入成功后就可以开始新建分区了。

/*  CreatePartition

 *

 *  Creates a new partition.  If it is a boot section partition, then it formats

 *  flash.

 *

 *  ENTRY

 *      dwStartSector - Logical sector to start the partition.  NEXT_FREE_LOC if 

 *          none specified. 

 *      dwNumSectors - Number of logical sectors of the partition.  USE_REMAINING_SPACE

 *          to indicate to take up the rest of the space on the flash for that partition.

 *      dwPartType - Type of partition to create.

 *      fActive - TRUE indicates to create the active partition.  FALSE for

 *          inactive.

 *      dwPartIndex - Index of the partition entry on the MBR

 *

 *  EXIT

 *      Handle to the partition on success.  INVALID_HANDLE_VALUE on error.

 */

 

static HANDLE CreatePartition (DWORD dwStartSector, DWORD dwNumSectors, DWORD dwPartType, BOOL fActive, DWORD dwPartIndex)

{

    DWORD dwBootInd = 0;

 

    RETAILMSG(1, (TEXT("CreatePartition: Enter CreatePartition for 0x%x./r/n"), dwPartType));

   

    if (fActive)

        dwBootInd |= PART_IND_ACTIVE;

    if (dwPartType == PART_BOOTSECTION || dwPartType == PART_BINFS || dwPartType == PART_XIP)

        dwBootInd |= PART_IND_READ_ONLY;   

 

     // If start sector is invalid, it means find next free sector

    if (dwStartSector == NEXT_FREE_LOC) {       

        dwStartSector = FindFreeSector();

        if (dwStartSector == INVALID_ADDR) {

            RETAILMSG(1, (TEXT("CreatePartition: can't find free sector./r/n")));

            return INVALID_HANDLE_VALUE;

        }

 

        // Start extended partition on a block boundary

        if ((dwPartType == PART_EXTENDED) && (dwStartSector % g_FlashInfo.wSectorsPerBlock)) {

            dwStartSector = (dwStartSector / g_FlashInfo.wSectorsPerBlock + 1) * g_FlashInfo.wSectorsPerBlock;

        }

    }

 

    // If num sectors is invalid, fill the rest of the space up

    if (dwNumSectors == USE_REMAINING_SPACE) {

 

        DWORD dwLastLogSector = LastLogSector();

        if (dwLastLogSector == INVALID_ADDR)

            return INVALID_HANDLE_VALUE;

 

        // Determine the number of blocks to reserve for the FAL compaction when creating an extended partition.

        DWORD dwReservedBlocks = g_FlashInfo.dwNumBlocks / PERCENTAGE_OF_MEDIA_TO_RESERVE;

        if((dwReservedBlocks = g_FlashInfo.dwNumBlocks / PERCENTAGE_OF_MEDIA_TO_RESERVE) < MINIMUM_FLASH_BLOCKS_TO_RESERVE) {

            dwReservedBlocks = MINIMUM_FLASH_BLOCKS_TO_RESERVE;

        }

       

        dwNumSectors = dwLastLogSector - dwStartSector + 1 - dwReservedBlocks * g_FlashInfo.wSectorsPerBlock;

    }

  

    if (!AreSectorsFree (dwStartSector, dwNumSectors)){

        RETAILMSG (1, (TEXT("fly:::::CreatePartition: sectors [0x%x, 0x%x] requested are out of range or taken by another partition/r/n"), dwStartSector, dwNumSectors));

        return INVALID_HANDLE_VALUE;

    }

 

    RETAILMSG(1, (TEXT("CreatePartition: Start = 0x%x, Num = 0x%x./r/n"), dwStartSector, dwNumSectors));

   

    AddPartitionTableEntry (dwPartIndex, dwStartSector, dwNumSectors, (BYTE)dwPartType, (BYTE)dwBootInd);

 

    if (dwBootInd & PART_IND_READ_ONLY) {

        if (!WriteLogicalNumbers (dwStartSector, dwNumSectors, TRUE)) {

            RETAILMSG(1, (TEXT("CreatePartition: can't mark sector info./r/n")));

            return INVALID_HANDLE_VALUE;

        }

    }

 

    if (!WriteMBR())

        return INVALID_HANDLE_VALUE;

 

    g_partStateTable[dwPartIndex].pPartEntry = (PPARTENTRY)(g_pbMBRSector + PARTTABLE_OFFSET + sizeof(PARTENTRY)*dwPartIndex);

    g_partStateTable[dwPartIndex].dwDataPointer = 0;

 

    return (HANDLE)&g_partStateTable[dwPartIndex];           

}

如果第二个参数为-1 ,则视为将余下的所有空间划为一个分区。LastLogSector(); 函数获得最后一个逻辑Sector 。static DWORD LastLogSector()

{

    if (g_dwLastLogSector) {

       return g_dwLastLogSector;

    }

 

    DWORD dwMBRBlock = g_dwMBRSectorNum / g_FlashInfo.wSectorsPerBlock;

    DWORD dwUnusableBlocks = dwMBRBlock;

 

    for (DWORD i = dwMBRBlock; i < g_FlashInfo.dwNumBlocks; i++) {

        if (IS_BLOCK_UNUSABLE (i))

            dwUnusableBlocks++;

    }

   

    g_dwLastLogSector = (g_FlashInfo.dwNumBlocks - dwUnusableBlocks) * g_FlashInfo.wSectorsPerBlock - 1;

 

    RETAILMSG(1, (TEXT("fly:::LastLogSector: Last log sector is: 0x%x./r/n"), g_dwLastLogSector));

   

    return g_dwLastLogSector;

}

即g_dwLastLogSector = (g_FlashInfo.dwNumBlocks - dwUnusableBlocks) * g_FlashInfo.wSectorsPerBlock - 1;// (NAND 的BLOCK 总数 – MBR 保存的那个BLOCK )* 每个BLOCK 的Sector 数 – 保存MBR 的那个Sector 。得到的就是从MBR 那个Sector 之后的所有Sector ,即逻辑大小。

AreSectorsFree (dwStartSector, dwNumSectors) 函数判断参数提供的起始Sector 和个数有没有超出来NAND 的界限,或者逻辑分区的界限。   

重头戏开始了。通过AddPartitionTableEntry (dwPartIndex, dwStartSector, dwNumSectors, (BYTE)dwPartType, (BYTE)dwBootInd); 准备分区信息写入分区表。

/*  AddPartitionTableEntry

 *

 *  Generates the partition entry for the partition table and copies the entry

 *  into the MBR that is stored in memory.

 * 

 *

 *  ENTRY

 *      entry - index into partition table

 *      startSector - starting logical sector

 *      totalSectors - total logical sectors

 *      fileSystem - type of partition

 *      bootInd - byte in partition entry that stores various flags such as

 *          active and read-only status.

 *

 *  EXIT

 */

 

static void AddPartitionTableEntry(DWORD entry, DWORD startSector, DWORD totalSectors, BYTE fileSystem, BYTE bootInd)

{

    PARTENTRY partentry = {0};

    Addr startAddr;

    Addr endAddr;

 

    ASSERT(entry < 4);

 

    // no checking with disk info and start/total sectors because we allow

    // bogus partitions for testing purposes

 

    // initially known partition table entry

    partentry.Part_BootInd = bootInd;

    partentry.Part_FileSystem = fileSystem;

    partentry.Part_StartSector = startSector;

    partentry.Part_TotalSectors = totalSectors;

 

    // logical block addresses for the first and final sector (start on the second head)

    startAddr.type = LBA;

    startAddr.lba = partentry.Part_StartSector;

    endAddr.type = LBA;

    endAddr.lba = partentry.Part_StartSector + partentry.Part_TotalSectors-1;

 

    // translate the LBA addresses to CHS addresses

    startAddr = LBAtoCHS(&g_FlashInfo, startAddr);

    endAddr = LBAtoCHS(&g_FlashInfo, endAddr);

 

    // starting address

    partentry.Part_FirstTrack = (BYTE)(startAddr.chs.cylinder & 0xFF);

    partentry.Part_FirstHead = (BYTE)(startAddr.chs.head & 0xFF);

    // lower 6-bits == sector, upper 2-bits = cylinder upper 2-bits of 10-bit cylinder #

    partentry.Part_FirstSector = (BYTE)((startAddr.chs.sector & 0x3F) | ((startAddr.chs.cylinder & 0x0300) >> 2));

 

    // ending address:

    partentry.Part_LastTrack = (BYTE)(endAddr.chs.cylinder & 0xFF);

    partentry.Part_LastHead = (BYTE)(endAddr.chs.head & 0xFF);

    // lower 6-bits == sector, upper 2-bits = cylinder upper 2-bits of 10-bit cylinder #

    partentry.Part_LastSector = (BYTE)((endAddr.chs.sector & 0x3F) | ((endAddr.chs.cylinder & 0x0300) >> 2));

 

    memcpy(g_pbMBRSector+PARTTABLE_OFFSET+(sizeof(PARTENTRY)*entry), &partentry, sizeof(PARTENTRY));

}

这里面的地址信息是一种叫CHS(Cyinder/Head/Sector) 的地址。eboot 中有将逻辑地址LBS(Logical Block Addr) 与这种地址互相转换的函数LBAtoCHS,CHSToLBA 。
Addr LBAtoCHS(FlashInfo *pFlashInfo, Addr lba)
{
    Addr chs;
    DWORD tmp = pFlashInfo->dwNumBlocks * pFlashInfo->wSectorsPerBlock;

    chs.type = CHS;
    chs.chs.cylinder = (WORD)(lba.lba / tmp);                                      // 柱面, 应该始终是0
    tmp = lba.lba % tmp;
    chs.chs.head = (WORD)(tmp / pFlashInfo->wSectorsPerBlock);                     // 块地址
    chs.chs.sector = (WORD)((tmp % pFlashInfo->wSectorsPerBlock) + 1);     // 扇区+1

    return chs;
}

Addr CHStoLBA(FlashInfo *pFlashInfo, Addr chs)
{
    Addr lba;

    lba.type = LBA;
    lba.lba = ((chs.chs.cylinder * pFlashInfo->dwNumBlocks + chs.chs.head)
        * pFlashInfo->wSectorsPerBlock)+ chs.chs.sector - 1;

return lba;
}

如果分区的格式有只读属性,则通过WriteLogicalNumbers ()函数写分区的Sectorinfo ,把这部分空间保护起来。

static BOOL WriteLogicalNumbers (DWORD dwStartSector, DWORD dwNumSectors, BOOL fReadOnly)

{

    DWORD dwNumSectorsWritten = 0;

 

    DWORD dwPhysSector = Log2Phys (dwStartSector);

    DWORD dwBlockNum = dwPhysSector / g_FlashInfo.wSectorsPerBlock;

    DWORD dwOffset = dwPhysSector % g_FlashInfo.wSectorsPerBlock;

   

    while (dwNumSectorsWritten < dwNumSectors) {

 

        // If bad block, move to the next block

        if (IS_BLOCK_UNUSABLE (dwBlockNum)) {

            dwBlockNum++;

            continue;

        }

 

        memset (g_pbBlock, 0xff, g_dwDataBytesPerBlock);

        memset (g_pSectorInfoBuf, 0xff, sizeof(SectorInfo) * g_FlashInfo.wSectorsPerBlock);

        // No need to check return, since a failed read means data hasn't been written yet.

        ReadBlock (dwBlockNum, g_pbBlock, g_pSectorInfoBuf);

        if (!FMD_EraseBlock (dwBlockNum)) {

            return FALSE;

        }

 

        DWORD dwSectorsToWrite = g_FlashInfo.wSectorsPerBlock - dwOffset;

        PSectorInfo pSectorInfo = g_pSectorInfoBuf + dwOffset;

 

        // If this is the last block, then calculate sectors to write if there isn't a full block to update

        if ((dwSectorsToWrite + dwNumSectorsWritten) > dwNumSectors)

            dwSectorsToWrite = dwNumSectors - dwNumSectorsWritten;

        

        for (DWORD iSector = 0; iSector < dwSectorsToWrite; iSector++, pSectorInfo++, dwNumSectorsWritten++) {

            // Assert read only by setting bit to 0 to prevent wear-leveling by FAL

            if (fReadOnly)

                pSectorInfo->bOEMReserved &= ~OEM_BLOCK_READONLY;

            // Set to write completed so FAL can map the sector 

            pSectorInfo->wReserved2 &= ~SECTOR_WRITE_COMPLETED;       

            // Write the logical sector number

            pSectorInfo->dwReserved1 = dwStartSector + dwNumSectorsWritten;           

        }

        if (!WriteBlock (dwBlockNum, g_pbBlock, g_pSectorInfoBuf))

            return FALSE;

       

        dwOffset = 0;

        dwBlockNum++;

    }

    return TRUE;

}

这就是为什么系统启动后,我们无法写入文件的BINFS 文件系统格式分区的原因了。而FAT 格式就可以。最后调用WriteMBR() 完全MBR 的写入,分区完毕。

让我们继续回到BP_OpenPartition 函数中,如果从一开始IsValidMBR() 就检测到有效的MBR ,GetPartitionTableIndex(dwPartType, fActive, &dwPartIndex); 获得分区表。和dwPartIndex 分区表的索引号。

static BOOL GetPartitionTableIndex (DWORD dwPartType, BOOL fActive, PDWORD pdwIndex)

{

    PPARTENTRY pPartEntry = (PPARTENTRY)(g_pbMBRSector + PARTTABLE_OFFSET);

    DWORD iEntry = 0;

   

    for (iEntry = 0; iEntry < NUM_PARTS; iEntry++, pPartEntry++) {

        if ((pPartEntry->Part_FileSystem == dwPartType) && (((pPartEntry->Part_BootInd & PART_IND_ACTIVE) != 0) == fActive)) {

            *pdwIndex = iEntry;

            return TRUE;

        }

        if (!IsValidPart (pPartEntry)) {

            *pdwIndex = iEntry;

            return FALSE;

        }

    }

 

    return FALSE;

}

 

重要结构:PARTENTRY

// end of master boot record contains 4 partition entries

typedef struct _PARTENTRY {

        BYTE            Part_BootInd;           // If 80h means this is boot partition

        BYTE            Part_FirstHead;         // Partition starting head based 0

        BYTE            Part_FirstSector;       // Partition starting sector based 1

        BYTE            Part_FirstTrack;        // Partition starting track based 0

        BYTE            Part_FileSystem;        // Partition type signature field

        BYTE            Part_LastHead;          // Partition ending head based 0

        BYTE            Part_LastSector;        // Partition ending sector based 1

        BYTE            Part_LastTrack;         // Partition ending track based 0

        DWORD           Part_StartSector;       // Logical starting sector based 0

        DWORD           Part_TotalSectors;      // Total logical sectors in partition

} PARTENTRY;

分区表就是通过这个结构写入MBR ,起始地址,分区大小,分区格式,对应结构写入MBR 所在的Sector 就可以了。在检测有效分区时static BOOL IsValidPart (PPARTENTRY pPartEntry)

{

    return (pPartEntry->Part_FileSystem != 0xff) && (pPartEntry->Part_FileSystem != 0);

}

就是通过对分区表文件系统格式的判断了。

 

 

把NAND 后面的空间,全部分为一个FAT 格式的分区。

    //

    // create extended partition in whatever is left

    //

    hPartEx = BP_OpenPartition( (NK_START_BLOCK+1+BINFS_BLOCK) * PAGES_PER_BLOCK,

                                NEXT_FREE_LOC,   // (1024 - (NK_START_BLOCK+1+SECTOR_TO_BLOCK_SIZE(FILE_TO_SECTOR_SIZE(dwBINFSPartLength)))) * PAGES_PER_BLOCK,

                                PART_DOS32,

                                TRUE,

                                PART_OPEN_ALWAYS);

 

    if (hPartEx == INVALID_HANDLE_VALUE )

    {

        EdbgOutputDebugString("*** WARN: StoreImageToBootMedia: Failed to open/create Extended partition ***/r/n");

    }

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/wu_ye_zhou/archive/2010/06/12/5667136.aspx

抱歉!评论已关闭.