现在的位置: 首页 > 综合 > 正文

3DShader之移位贴图(Displacement Mapping)

2013年05月29日 ⁄ 综合 ⁄ 共 31608字 ⁄ 字号 评论关闭

我们知道法线贴图是只是改了物体的法线属性,用来计算光照,但是并没有改变物体本身的网格.但是移位贴图就不一样了,它会移动物体的顶点.我用移位贴图做了个海洋,好了,上了图再讲:

注意看海的边缘的顶点,已经实现了移动

最后,添加了一个笛卡尔转球形坐标的函数将其转为球形坐标,到时候我会提供球形版本的源码,如果需要平面的只需要在shader将调用这个函数的语句注释掉即可.

好了,不啰嗦了,困得不行了!

类似于法线贴图,移位贴图的每一个纹素中存储了一个向量,这个向量代表了对应顶点的位移。


注意,此处的纹素并不是与像素一一对应,而是与顶点一一对应,因此,纹理的纹素个数与网格的顶点个数是相等的。为什么必须相等,源代码里写

了原因的

 

在VS阶段,需要获取每个顶点对应的纹素中的位移向量. 注意只有3.0版本以上的vs才支持在VS阶段获取纹理数据,之前的版本只有ps才能获取纹理数据

好了,讲下这个项目的大概原理

这个项目,有两张移位纹理和两张法线纹理,目的就是为了进一步随机化.所以跟这里的实质内容关系不大,我会把它当成一张来讲

移位纹理可以存储需要移位的向量,而我们这里只存储了一个r通道,g,b通道都为1,所以我们的移位纹理储存的是[0,255]的随机值,注意移位纹理是128*128的,其实就是一个128*128的高度图.用的就是这个高度图去波动128*128网格的顶点的y值,当然采样高度图的坐标是移动的.

移动了顶点的y坐标,前面我们在法线贴图也提到过可以通过高度图生成法线纹理,这里一样,通过变化后的Y坐标也可以生成这个点的法向量.

这个法向量就用来算光照.当然这样算出来的光照很粗略,如下图所示:

所以,法线贴图又来了,这个是为了增加细节效果的,跟移位没有点关系,具体的方法是:将摄像机,灯光全转换到顶点的切线空间,然后通过纹理坐标对法线纹理进行采样,然后再以这三个变量来算光照.注意项目中的采样法线纹理的坐标经过缩放的,它重复了8次.

加上细节后:

好了,贴源代码

/*------------------------------------------------------------
	DisplacementMapping.fx -- achieve displacement mapping
			(c) Seamanj.2013/9/1
------------------------------------------------------------*/
#include "DXUT.h"
#include "resource.h"

// phase1 : add camera
// phase2 : add sky box
// phase3 : add grid mesh
// phase4 : add FX
#define phase1 1
#define phase2 1
#define phase3 1
#define phase4 1
#if phase1
#include "DXUTcamera.h"
CFirstPersonCamera g_Camera;
#endif
#if phase2
// Vertex Buffer
LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL;
// Index Buffer
LPDIRECT3DINDEXBUFFER9 g_pIB = NULL;
PDIRECT3DCUBETEXTURE9	g_pCubeTex = 0;
#endif
#if phase3
#include <vector>
int g_iVerticesNumPerRow = 128;
int g_iVerticesNumPerCol = 128;
//注意:这里的尺寸一定要给位移图片的大小一样,我原本也想过用129个顶点(第0到第128个),然后将第0和第128
//顶点的坐标和纹理都设为一样,纹理坐标u坐标设为0,这样是不行的,虽然看上去纹理重合,但并不是每一个顶点
//对应一个点,必然会有一个纹理坐标重合,这样就破坏了纹理的连续性,就相当于把纹理从中拉开了一个距离
//出来一样,并且这个距离平行U方向的颜色都一样.所以一旦位移纹理偏移就不会连续了,同理如果只有127个点
//那么纹理也会失去连续性
float g_fDeltaX = 0.25f;
float g_fDeltaZ = 0.25f;

const float EPSILON  = 0.001f;
IDirect3DVertexDeclaration9* g_pVertexDecl;
ID3DXMesh* g_pMesh;
// The two normal maps to scroll.
IDirect3DTexture9* g_pNormalTex1;
IDirect3DTexture9* g_pNormalTex2;

// The two displacement maps to scroll.
IDirect3DTexture9* g_pDisplacementTex1;
IDirect3DTexture9* g_pDisplacementTex2;

//===============================================================
// Colors and Materials

const D3DXCOLOR WHITE(1.0f, 1.0f, 1.0f, 1.0f);
const D3DXCOLOR BLACK(0.0f, 0.0f, 0.0f, 1.0f);
const D3DXCOLOR RED(1.0f, 0.0f, 0.0f, 1.0f);
const D3DXCOLOR GREEN(0.0f, 1.0f, 0.0f, 1.0f);
const D3DXCOLOR BLUE(0.0f, 0.0f, 1.0f, 1.0f);


struct DirectionalLight
{
	D3DXCOLOR ambient;
	D3DXCOLOR diffuse;
	D3DXCOLOR specular;
	D3DXVECTOR3 directionInWorld;
};


struct Material
{
	Material()
		:ambient(WHITE), diffuse(WHITE), specular(WHITE), specularPower(8.0f){}
	Material(const D3DXCOLOR& a, const D3DXCOLOR& d, 
		 const D3DXCOLOR& s, float power)
		:ambient(a), diffuse(d), specular(s), specularPower(power){}

	D3DXCOLOR ambient;
	D3DXCOLOR diffuse;
	D3DXCOLOR specular;
	float specularPower;
};


DirectionalLight g_structDirectionalLight;


Material g_structMaterial;


D3DXVECTOR2 g_scaleHeights = D3DXVECTOR2(0.7f, 1.1f);
float g_fTexScale = 8.0f;

D3DXVECTOR2 g_normalMapVelocity1 = D3DXVECTOR2(0.05f, 0.07f);
D3DXVECTOR2 g_normalMapVelocity2 = D3DXVECTOR2(-0.01f, 0.13f);
D3DXVECTOR2 g_displacementMapVelocity1 = D3DXVECTOR2(0.012f, 0.015f);
D3DXVECTOR2 g_displacementMapVelocity2 = D3DXVECTOR2(0.014f, 0.05f);

// Offset of normal maps for scrolling (vary as a function of time)
D3DXVECTOR2 g_normalMapOffset1(0.0f, 0.0f);
D3DXVECTOR2 g_normalMapOffset2(0.0f, 0.0f);

// Offset of displacement maps for scrolling (vary as a function of time)
D3DXVECTOR2 g_displacementMapOffset1(0.0f, 0.0f);
D3DXVECTOR2 g_displacementMapOffset2(0.0f, 0.0f);


#endif

#if phase4
#include "SDKmisc.h"//加载文件时会用到
ID3DXEffect*		g_pEffect = NULL;       // D3DX effect interface
D3DXHANDLE			g_hTech = 0;
D3DXHANDLE			g_hWorld = 0;
D3DXHANDLE			g_hWorldInv = 0;
D3DXHANDLE			g_hWorldViewProj = 0;
D3DXHANDLE			g_hEyePositionInWorld = 0;
D3DXHANDLE			g_hDirectionalLightStruct = 0;
D3DXHANDLE			g_hMaterialStruct = 0;
D3DXHANDLE			g_hNormalTex1 = 0;
D3DXHANDLE			g_hNormalTex2 = 0;
D3DXHANDLE			g_hDisplacementTex1 = 0;
D3DXHANDLE			g_hDisplacementTex2 = 0;
D3DXHANDLE			g_hNormalOffset1 = 0;
D3DXHANDLE			g_hNormalOffset2 = 0;
D3DXHANDLE			g_hDisplacementOffset1 = 0;
D3DXHANDLE			g_hDisplacementOffset2 = 0;
D3DXHANDLE			g_hScaleHeights = 0; //缩放移位1,2纹理得到的高度
D3DXHANDLE			g_hDelta = 0;	//网格X,Z轴方向的步长

#endif
//--------------------------------------------------------------------------------------
// Rejects any D3D9 devices that aren't acceptable to the app by returning false
//--------------------------------------------------------------------------------------
bool CALLBACK IsD3D9DeviceAcceptable( D3DCAPS9* pCaps, D3DFORMAT AdapterFormat, D3DFORMAT BackBufferFormat,
                                      bool bWindowed, void* pUserContext )
{
    // Typically want to skip back buffer formats that don't support alpha blending
    IDirect3D9* pD3D = DXUTGetD3D9Object();
    if( FAILED( pD3D->CheckDeviceFormat( pCaps->AdapterOrdinal, pCaps->DeviceType,
                                         AdapterFormat, D3DUSAGE_QUERY_POSTPIXELSHADER_BLENDING,
                                         D3DRTYPE_TEXTURE, BackBufferFormat ) ) )
        return false;

    return true;
}


//--------------------------------------------------------------------------------------
// Before a device is created, modify the device settings as needed
//--------------------------------------------------------------------------------------
bool CALLBACK ModifyDeviceSettings( DXUTDeviceSettings* pDeviceSettings, void* pUserContext )
{
#if phase1
	pDeviceSettings->d3d9.pp.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;
#endif
    return true;
}
#if phase3
//create Vertex Declaration
HRESULT createVertexDeclaration( IDirect3DDevice9* pd3dDevice )
{

	D3DVERTEXELEMENT9 decl[] = 
	{
		// offsets in bytes
		{0, 0,  D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
		{0, 12, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},
		{0, 20, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 1},
		D3DDECL_END()
	};

	return pd3dDevice->CreateVertexDeclaration(decl, &g_pVertexDecl);

}
struct GridVertexFormat
{
	D3DXVECTOR3 pos;
	D3DXVECTOR2 scaledTexCoord;     // [a, b]
	D3DXVECTOR2 normalizedTexCoord; // [0, 1]
};
//将顶点位置以及索引写入指定的vector中,为后面写入缓冲区打下基础
void writeVertexPosAndIndicesToVectors(int iVerticesNumPerRow, int iVerticesNumPerCol,float fDeltaX, float fDeltaZ, 
				const D3DXVECTOR3& center,std::vector<D3DXVECTOR3>& vecVertexPosData,
				std::vector<DWORD>& vecIndexData)
{
	int iVerticesNum = (iVerticesNumPerRow) * (iVerticesNumPerCol);
	int iCellsNumPerRow = iVerticesNumPerRow - 1;
	int iCellsNumPerCol = iVerticesNumPerCol - 1;

	int iTrianglesNum = iCellsNumPerRow * iCellsNumPerCol * 2;

	float fWidth = (float)iCellsNumPerCol * fDeltaX;
	float fDepth = (float)iCellsNumPerRow * fDeltaZ;

	//===========================================
	// Build vertices.

	// We first build the grid geometry centered about the origin and on
	// the xz-plane, row-by-row and in a top-down fashion.  We then translate
	// the grid vertices so that they are centered about the specified 
	// parameter 'center'.从左上角开始,列序优先的方式放置顶点数据

	vecVertexPosData.resize( iVerticesNum );

	// Offsets to translate grid from quadrant 4 to center of 
	// coordinate system.
	float fOffsetX = -fWidth * 0.5f; 
	float fOffsetZ =  fDepth * 0.5f;

	int k = 0;
	for(int i = 0; i < iVerticesNumPerRow; ++i)
	{
		for(int j = 0; j < iVerticesNumPerCol; ++j)
		{
			// Negate the depth coordinate to put in quadrant four.  
			// Then offset to center about coordinate system.
			vecVertexPosData[k].x = j * fDeltaX + fOffsetX;
			vecVertexPosData[k].z = -i * fDeltaZ + fOffsetZ;
			vecVertexPosData[k].y =  0.0f;

			// Translate so that the center of the grid is at the
			// specified 'center' parameter.
			D3DXMATRIX T;
			D3DXMatrixTranslation(&T, center.x, center.y, center.z);
			D3DXVec3TransformCoord(&vecVertexPosData[k], &vecVertexPosData[k], &T);
			
			++k; // Next vertex
		}
	}

	//===========================================
	// Build indices.

	vecIndexData.resize(iTrianglesNum * 3);
	 
	// Generate indices for each quad.
	k = 0;
	for(DWORD i = 0; i < (DWORD)iCellsNumPerRow; ++i)
	{
		for(DWORD j = 0; j < (DWORD)iCellsNumPerCol; ++j)
		{
			vecIndexData[k]     =   i   * iVerticesNumPerCol + j;
			vecIndexData[k + 1] =   i   * iVerticesNumPerCol + j + 1;
			vecIndexData[k + 2] = (i+1) * iVerticesNumPerCol + j;
					
			vecIndexData[k + 3] = (i+1) * iVerticesNumPerCol + j;
			vecIndexData[k + 4] =   i   * iVerticesNumPerCol + j + 1;
			vecIndexData[k + 5] = (i+1) * iVerticesNumPerCol + j + 1;
			
// 			1---2   5
// 			|  /  / |
// 			| /  /  | 
// 			3   4---6
			// next quad
			k += 6;
		}
	}
}

#endif
//--------------------------------------------------------------------------------------
// Create any D3D9 resources that will live through a device reset (D3DPOOL_MANAGED)
// and aren't tied to the back buffer size
//--------------------------------------------------------------------------------------
HRESULT CALLBACK OnD3D9CreateDevice( IDirect3DDevice9* pd3dDevice, const D3DSURFACE_DESC* pBackBufferSurfaceDesc,
                                     void* pUserContext )
{
#if phase3
	HRESULT hr;
#endif
#if phase1
// Setup the camera's view parameters    
	D3DXVECTOR3 vecEye( 0.0f, 0.0f, -5.0f );  
	D3DXVECTOR3 vecAt ( 0.0f, 0.0f, -0.0f );  
	g_Camera.SetViewParams( &vecEye, &vecAt );  
	FLOAT fObjectRadius=1;  
	//摄像机缩放的3个参数
	//g_Camera.SetRadius( fObjectRadius * 3.0f, fObjectRadius * 0.5f, fObjectRadius * 10.0f );
	g_Camera.SetEnablePositionMovement( true );
#endif
#if phase2
	D3DXCreateCubeTextureFromFile(pd3dDevice, L"grassenvmap1024.dds", &g_pCubeTex);
#endif
#if phase3
	createVertexDeclaration(pd3dDevice);
	DWORD dwTrianglesNum  = (g_iVerticesNumPerRow - 1) * (g_iVerticesNumPerCol - 1) * 2;
	DWORD dwVerticesNum = g_iVerticesNumPerRow * g_iVerticesNumPerCol;
	D3DVERTEXELEMENT9 elems[MAX_FVF_DECL_SIZE];
	UINT uElemsNum = 0;
	g_pVertexDecl->GetDeclaration(elems, &uElemsNum);
	V(	D3DXCreateMesh(dwTrianglesNum, dwVerticesNum, D3DXMESH_MANAGED, elems, pd3dDevice, &g_pMesh) );
	//===============================================================
	// Write the grid vertices and triangles to the mesh.
	GridVertexFormat *pVertices = NULL;
	V( g_pMesh->LockVertexBuffer(0, (void**)&pVertices) );
	std::vector<D3DXVECTOR3> vecVertexPosData;
	std::vector<DWORD> vecIndexData;
	writeVertexPosAndIndicesToVectors(g_iVerticesNumPerRow, g_iVerticesNumPerCol, g_fDeltaX, 
		g_fDeltaZ, D3DXVECTOR3(0.0f, 0.0f, 0.0f), vecVertexPosData, vecIndexData);
	for(int i = 0; i < g_iVerticesNumPerRow; ++i)
	{
		for(int j = 0; j < g_iVerticesNumPerCol; ++j)
		{
			DWORD index   = i * g_iVerticesNumPerCol + j;
			pVertices[index].pos  = vecVertexPosData[index];
				//注意每步步长为1/127,最后一个点的U纹理坐标为1,第一个点的U纹理坐标为0,实现了无缝结合
				//有人会问为什么129个点就不行呢?因为纹理只有128个点的位置,129个点的话,必然会有一个纹理
				//坐标重合,这样就破坏了纹理的连续性,就相当于把纹理从中拉开了一个距离出来一样,并且这个
				//距离平行U方向的颜色都一样.所以一旦位移纹理偏移就不会连续了
				pVertices[index].scaledTexCoord = D3DXVECTOR2((float)j / (g_iVerticesNumPerCol-1), 
					(float)i / (g_iVerticesNumPerRow-1))* g_fTexScale;
				//g_fTexScale表示Grid里面用几个纹理,值越大表示纹理重复次数越多
				pVertices[index].normalizedTexCoord = D3DXVECTOR2((float)j / (g_iVerticesNumPerCol-1) , 
					(float)i / (g_iVerticesNumPerRow-1));//注意这里应该减1,好实现首尾衔接,当然纹理的V
				//坐标不用衔接,如果不减1,那么纹理将不会衔接就相当于只用了纹理的前127个像素,虽然没有影响
				//纹理的连续性,但是会影响衔接性
		
		
		}
	}
	V( g_pMesh->UnlockVertexBuffer() );
	//===============================================================
	// Write triangle data(Indices & Attributes) so we can compute normals.
	WORD* pIndices = NULL;
	V( g_pMesh->LockIndexBuffer(0, (void**)&pIndices) );
	DWORD* pAttributes = NULL;
	V( g_pMesh->LockAttributeBuffer(0, &pAttributes) );
	for(UINT i = 0; i < g_pMesh->GetNumFaces(); ++i)
	{
		pIndices[i*3+0] = (WORD)vecIndexData[i*3+0];
		pIndices[i*3+1] = (WORD)vecIndexData[i*3+1];
		pIndices[i*3+2] = (WORD)vecIndexData[i*3+2];

		pAttributes[i] = 0; // All in subset 0.
	}
	
	V( g_pMesh->UnlockIndexBuffer() );
	V( g_pMesh->UnlockAttributeBuffer() );
	//===============================================================
	// Optimize for the vertex cache and build attribute table.
	// D3DXMESHOPT_ATTRSORT optimization builds an attribute table.
	DWORD* adj = new DWORD[g_pMesh->GetNumFaces() * 3];
	// Generate adjacency info
	V(g_pMesh->GenerateAdjacency(EPSILON, adj));
	V(g_pMesh->OptimizeInplace(D3DXMESHOPT_VERTEXCACHE|D3DXMESHOPT_ATTRSORT,adj, 0, 0, 0));
	delete[] adj;
	//===============================================================
	// Create textures.
	V(D3DXCreateTextureFromFile(pd3dDevice, L"normal_map1.dds", &g_pNormalTex1));
	V(D3DXCreateTextureFromFile(pd3dDevice, L"normal_map2.dds", &g_pNormalTex2));
	V(D3DXCreateTextureFromFileEx(pd3dDevice, L"displacement_map1.dds", g_iVerticesNumPerRow, 
		g_iVerticesNumPerCol,1, 0, D3DFMT_R32F, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, 
		0, 0, 0, &g_pDisplacementTex1));
	V(D3DXCreateTextureFromFileEx(pd3dDevice, L"displacement_map2.dds", g_iVerticesNumPerRow, 
		g_iVerticesNumPerCol,1, 0, D3DFMT_R32F, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, 
		0, 0, 0, &g_pDisplacementTex2));
#endif
#if phase4
	WCHAR str[MAX_PATH];
	// Read the D3DX effect file
	V_RETURN( DXUTFindDXSDKMediaFileCch( str, MAX_PATH, L"DisplacementMapping.fx" ) );
	// Create the effect 
	LPD3DXBUFFER pErrorBuff = NULL;
	V_RETURN( D3DXCreateEffectFromFile(
		pd3dDevice,		// associated device
		str,			// effect filename
		NULL,			// no preprocessor definitions
		NULL,			// no ID3DXInclude interface
		D3DXSHADER_DEBUG,	// compile flags
		NULL,			// don't share parameters
		&g_pEffect,		// return effect
		&pErrorBuff			// return error messages
		) );
	if( pErrorBuff )
		MessageBoxA(0, (char*)pErrorBuff->GetBufferPointer(), 0, 0);
	// get handle
	g_hTech = g_pEffect->GetTechniqueByName("myTech");
	g_hWorld = g_pEffect->GetParameterByName(0, "g_mWorld");
	g_hWorldInv = g_pEffect->GetParameterByName(0, "g_mWorldInv");
	g_hWorldViewProj = g_pEffect->GetParameterByName(0, "g_mWorldViewProj");
	g_hEyePositionInWorld = g_pEffect->GetParameterByName(0, "g_eyePositionInWorld");
	g_hDirectionalLightStruct = g_pEffect->GetParameterByName(0, "g_structDirectionalLight");
	g_hMaterialStruct = g_pEffect->GetParameterByName(0, "g_structMaterial");

	g_hNormalTex1 = g_pEffect->GetParameterByName(0, "g_texNormalMap1");
	g_hNormalTex2 = g_pEffect->GetParameterByName(0, "g_texNormalMap2");
	g_hDisplacementTex1 = g_pEffect->GetParameterByName(0, "g_texDisplacementMap1");
	g_hDisplacementTex2 = g_pEffect->GetParameterByName(0, "g_texDisplacementMap2");
	g_hNormalOffset1 = g_pEffect->GetParameterByName(0, "g_normalOffset1");
	g_hNormalOffset2 = g_pEffect->GetParameterByName(0, "g_normalOffset2");
	g_hDisplacementOffset1 = g_pEffect->GetParameterByName(0, "g_DisplacementOffset1");
	g_hDisplacementOffset2 = g_pEffect->GetParameterByName(0, "g_DisplacementOffset2");
	g_hScaleHeights = g_pEffect->GetParameterByName(0, "g_scaleHeights");
	g_hDelta = g_pEffect->GetParameterByName(0, "g_delta");

	// We don't need to set these every frame since they do not change.

	V(g_pEffect->SetTechnique(g_hTech));
	V(g_pEffect->SetTexture(g_hNormalTex1, g_pNormalTex1));
	V(g_pEffect->SetTexture(g_hNormalTex2, g_pNormalTex2));
	V(g_pEffect->SetTexture(g_hDisplacementTex1, g_pDisplacementTex1));
	V(g_pEffect->SetTexture(g_hDisplacementTex2, g_pDisplacementTex2));

	g_structDirectionalLight.directionInWorld = D3DXVECTOR3(0.0f, -1.0f, -3.0f);
	D3DXVec3Normalize(&g_structDirectionalLight.directionInWorld, &g_structDirectionalLight.directionInWorld);
	g_structDirectionalLight.ambient = D3DXCOLOR(0.3f, 0.3f, 0.3f, 1.0f);
	g_structDirectionalLight.diffuse = D3DXCOLOR(1.0f, 1.0f, 1.0f, 1.0f);
	g_structDirectionalLight.specular = D3DXCOLOR(0.7f, 0.7f, 0.7f, 1.0f);

	V(g_pEffect->SetValue(g_hDirectionalLightStruct, &g_structDirectionalLight, sizeof(DirectionalLight)));

	g_structMaterial.ambient   = D3DXCOLOR(0.4f, 0.4f, 0.7f, 0.0f);
	g_structMaterial.diffuse   = D3DXCOLOR(0.4f, 0.4f, 0.7f, 1.0f);
	g_structMaterial.specular      = 0.8f*WHITE;
	g_structMaterial.specularPower = 128.0f;

	V(g_pEffect->SetValue(g_hMaterialStruct, &g_structMaterial, sizeof(Material)));
	V(g_pEffect->SetValue(g_hScaleHeights, &g_scaleHeights, sizeof(D3DXVECTOR2)));
	D3DXVECTOR2 delta(g_fDeltaX, g_fDeltaZ);
	V(g_pEffect->SetValue(g_hDelta, &delta, sizeof(D3DXVECTOR2)));

#endif
    return S_OK;
}

#if phase2
struct MyVertexFormat
{
	FLOAT x, y, z;
	FLOAT u, v, w;
};
#define FVF_VERTEX (D3DFVF_XYZ | D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE3(0) )
static HRESULT initVertexIndexBuffer(IDirect3DDevice9* pd3dDevice)
{
	static const MyVertexFormat Vertices[] = 
	{
		//+X
		{  1, -1, -1,  1, -1, -1 },
		{  1, -1, 1, 1, -1, 1 },
		{  1, 1, 1 , 1, 1, 1  },
		{ 1, 1, -1,	1, 1, -1 },
		//-X
		{ -1, -1, -1,-1, -1, -1 },
		{ -1, 1, -1, -1, 1, -1 }, 
		{ -1, 1, 1 , -1, 1, 1 }, 
		{ -1, -1, 1, -1, -1, 1}, 
		//+Y
		{ -1, 1, -1 ,-1, 1, -1 }, 
		{ 1, 1, -1 ,1, 1, -1 },
		{ 1, 1, 1 ,1, 1, 1},
		{ -1, 1, 1 ,-1, 1, 1 },
		//-Y
		{ -1, -1, -1,-1, -1, -1 }, 
		{ -1, -1, 1,-1, -1, 1 },
		{ 1, -1, 1,1, -1, 1 },
		{ 1, -1, -1, 1, -1, -1},
		//Z
		{ -1, -1, 1,-1, -1, 1 }, 
		{ -1, 1, 1,-1, 1, 1 },
		{ 1, 1, 1,1, 1, 1 },
		{ 1, -1, 1,1, -1, 1 },
		//-Z
		 { -1, -1, -1,-1, -1, -1 }, 
		{ 1, -1, -1,1, -1, -1 },
		{ 1, 1, -1,1, 1, -1 },
		{ -1, 1, -1,-1, 1, -1 }
	};
	if (FAILED(pd3dDevice->CreateVertexBuffer(sizeof(Vertices),
		0, FVF_VERTEX,
		D3DPOOL_DEFAULT,
		&g_pVB, NULL))) {
			return E_FAIL;
	}
	void* pVertices;
	if (FAILED(g_pVB->Lock(0, 0, /* map entire buffer */
		&pVertices, 0))) {
			return E_FAIL;
	}
	memcpy(pVertices, Vertices, sizeof(Vertices));
	g_pVB->Unlock();

	// Create and initialize index buffer
	static const WORD Indices[] =
	{
		0, 1, 2,
		0, 2, 3,

		4, 5, 6,
		4, 6, 7,

		8, 9, 10,
		8,10, 11,

		12,13,14,
		12,14,15,

		16,17,18,
		16,18,19,

		20,21,22,
		20,22,23
	};
	if (FAILED(pd3dDevice->CreateIndexBuffer(sizeof(Indices),
		D3DUSAGE_WRITEONLY, 
		D3DFMT_INDEX16,
		D3DPOOL_DEFAULT,
		&g_pIB, NULL))) {
			return E_FAIL;
	}
	void* pIndices;
	if (FAILED(g_pIB->Lock(0, 0, /* map entire buffer */
		&pIndices, 0))) {
			return E_FAIL;
	}
	memcpy(pIndices, Indices, sizeof(Indices));
	g_pIB->Unlock();
	return S_OK;
}



#endif
//--------------------------------------------------------------------------------------
// Create any D3D9 resources that won't live through a device reset (D3DPOOL_DEFAULT) 
// or that are tied to the back buffer size 
//--------------------------------------------------------------------------------------
HRESULT CALLBACK OnD3D9ResetDevice( IDirect3DDevice9* pd3dDevice, const D3DSURFACE_DESC* pBackBufferSurfaceDesc,
                                    void* pUserContext )
{
#if phase1
	pd3dDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );  
	//关闭光照处理, 默认情况下启用光照处理   
	pd3dDevice->SetRenderState( D3DRS_LIGHTING, FALSE );  
//Setup the camera's projection parameters   
	float fAspectRatio = pBackBufferSurfaceDesc->Width / ( FLOAT )pBackBufferSurfaceDesc->Height;  
	  
	g_Camera.SetProjParams( D3DX_PI / 2, fAspectRatio, 0.1f, 5000.0f );  

#endif
#if phase4
	#if phase3
	HRESULT hr;
	if( g_pEffect )
        V_RETURN( g_pEffect->OnResetDevice() );
#endif
#endif
#if !phase2
    return S_OK;
#else
	return initVertexIndexBuffer(pd3dDevice);
#endif
}


//--------------------------------------------------------------------------------------
// Handle updates to the scene.  This is called regardless of which D3D API is used
//--------------------------------------------------------------------------------------
void CALLBACK OnFrameMove( double fTime, float fElapsedTime, void* pUserContext )
{
#if phase1
	g_Camera.FrameMove( fElapsedTime );
#endif
#if phase4
	g_normalMapOffset1 += g_normalMapVelocity1 * fElapsedTime;
	g_normalMapOffset2 += g_normalMapVelocity2 * fElapsedTime;
	g_displacementMapOffset1 += g_displacementMapVelocity1 * fElapsedTime;
	//g_displacementMapOffset2 += g_displacementMapVelocity2 * fElapsedTime;

	if(g_normalMapOffset1.x >= 1.0f || g_normalMapOffset1.x <= -1.0f)
		g_normalMapOffset1.x = 0.0f;
	if(g_normalMapOffset2.x >= 1.0f || g_normalMapOffset2.x <= -1.0f)
		g_normalMapOffset2.x = 0.0f;
	if(g_normalMapOffset1.y >= 1.0f || g_normalMapOffset1.y <= -1.0f)
		g_normalMapOffset1.y = 0.0f;
	if(g_normalMapOffset2.y >= 1.0f || g_normalMapOffset2.y <= -1.0f)
		g_normalMapOffset2.y = 0.0f;

	if(g_displacementMapOffset1.x >= 1.0f || g_displacementMapOffset1.x <= -1.0f)
		g_displacementMapOffset1.x = 0.0f;
	if(g_displacementMapOffset2.x >= 1.0f || g_displacementMapOffset2.x <= -1.0f)
		g_displacementMapOffset2.x = 0.0f;
	if(g_displacementMapOffset1.y >= 1.0f || g_displacementMapOffset1.y <= -1.0f)
		g_displacementMapOffset1.y = 0.0f;
	if(g_displacementMapOffset2.y >= 1.0f || g_displacementMapOffset2.y <= -1.0f)
		g_displacementMapOffset2.y = 0.0f;

#endif
}


//--------------------------------------------------------------------------------------
// Render the scene using the D3D9 device
//--------------------------------------------------------------------------------------
void CALLBACK OnD3D9FrameRender( IDirect3DDevice9* pd3dDevice, double fTime, float fElapsedTime, void* pUserContext )
{
    HRESULT hr;

    // Clear the render target and the zbuffer 
    V( pd3dDevice->Clear( 0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_ARGB( 0, 45, 50, 170 ), 1.0f, 0 ) );

    // Render the scene
    if( SUCCEEDED( pd3dDevice->BeginScene() ) )
    {
#if phase2

		pd3dDevice->SetRenderState(D3DRS_LIGHTING, false);
		// Set world matrix  
		D3DXMATRIX M;
		D3DXMatrixIdentity( &M ); // M = identity matrix
		D3DXMatrixScaling(&M,2000, 2000, 2000);
		pd3dDevice->SetTransform(D3DTS_WORLD, &M) ; 
		// Set view matrix   
		D3DXMATRIX view  = *g_Camera.GetViewMatrix() ;  
		pd3dDevice->SetTransform(D3DTS_VIEW, &view) ;  
		// Set projection matrix   
		D3DXMATRIX proj  = *g_Camera.GetProjMatrix() ;
		pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);
		pd3dDevice->SetTransform(D3DTS_PROJECTION, &proj) ;  
		pd3dDevice->SetStreamSource(0, g_pVB, 0, sizeof(MyVertexFormat));
		pd3dDevice->SetIndices(g_pIB);//sets the current index buffer. 
		pd3dDevice->SetFVF(FVF_VERTEX);//Sets the current vertex stream declaration.
		pd3dDevice->SetTexture(0, g_pCubeTex);
		pd3dDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, 24, 0, 12);	

#endif
#if phase3
		D3DXMatrixIdentity( &M ); // M = identity matrix
		pd3dDevice->SetTransform(D3DTS_WORLD, &M) ; 
		pd3dDevice->SetTexture(0, 0);
		g_pMesh->DrawSubset(0);
#endif
#if phase4
		pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
		D3DXMATRIXA16 mWorld, mWorldInv;
		D3DXMatrixIdentity(&mWorld);
		V(g_pEffect->SetMatrix(g_hWorld, &mWorld));
		D3DXMatrixInverse(&mWorldInv, 0, &mWorld);
		V(g_pEffect->SetMatrix(g_hWorldInv, &mWorldInv));
		//set WorldViewProject matrix
		D3DXMATRIXA16 mWorldViewProjection;
		mWorldViewProjection =  *g_Camera.GetViewMatrix() * *g_Camera.GetProjMatrix();
		V( g_pEffect->SetMatrix( g_hWorldViewProj, &mWorldViewProjection) );
		V( g_pEffect->SetFloatArray( g_hEyePositionInWorld, (const float*)(g_Camera.GetEyePt()), 3) );
		V(g_pEffect->SetValue(g_hNormalOffset1, &g_normalMapOffset1, sizeof(D3DXVECTOR2)));
		V(g_pEffect->SetValue(g_hNormalOffset2, &g_normalMapOffset2, sizeof(D3DXVECTOR2)));
		V(g_pEffect->SetValue(g_hDisplacementOffset1, &g_displacementMapOffset1, sizeof(D3DXVECTOR2)));
		V(g_pEffect->SetValue(g_hDisplacementOffset2, &g_displacementMapOffset2, sizeof(D3DXVECTOR2)));
		UINT iPass, cPasses;
		V( g_pEffect->Begin( &cPasses, 0 ) );
		for( iPass = 0; iPass < cPasses ; iPass++ )
		{
			V( g_pEffect->BeginPass( iPass ) );
			g_pMesh->DrawSubset(0);
			V( g_pEffect->EndPass() );
		}
		V( g_pEffect->End() );
#endif

        V( pd3dDevice->EndScene() );
    }
}


//--------------------------------------------------------------------------------------
// Handle messages to the application 
//--------------------------------------------------------------------------------------
LRESULT CALLBACK MsgProc( HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam,
                          bool* pbNoFurtherProcessing, void* pUserContext )
{
#if phase1
	g_Camera.HandleMessages( hWnd, uMsg, wParam, lParam );
#endif
    return 0;
}


//--------------------------------------------------------------------------------------
// Release D3D9 resources created in the OnD3D9ResetDevice callback 
//--------------------------------------------------------------------------------------
void CALLBACK OnD3D9LostDevice( void* pUserContext )
{
#if phase2
	SAFE_RELEASE(g_pVB);
	SAFE_RELEASE(g_pIB);
#endif
#if phase3
	SAFE_RELEASE(g_pVertexDecl);
#endif
#if phase4
	if( g_pEffect )
        g_pEffect->OnLostDevice();
#endif
}


//--------------------------------------------------------------------------------------
// Release D3D9 resources created in the OnD3D9CreateDevice callback 
//--------------------------------------------------------------------------------------
void CALLBACK OnD3D9DestroyDevice( void* pUserContext )
{
#if phase2
	SAFE_RELEASE(g_pCubeTex);
#endif
#if phase3
	SAFE_RELEASE(g_pMesh);
	SAFE_RELEASE(g_pNormalTex1);
	SAFE_RELEASE(g_pNormalTex2);
	SAFE_RELEASE(g_pDisplacementTex1);
	SAFE_RELEASE(g_pDisplacementTex2);
#endif
#if phase4
	SAFE_RELEASE(g_pEffect);
#endif
}


//--------------------------------------------------------------------------------------
// Initialize everything and go into a render loop
//--------------------------------------------------------------------------------------
INT WINAPI wWinMain( HINSTANCE, HINSTANCE, LPWSTR, int )
{
    // Enable run-time memory check for debug builds.
#if defined(DEBUG) | defined(_DEBUG)
    _CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF );
#endif

    // Set the callback functions
    DXUTSetCallbackD3D9DeviceAcceptable( IsD3D9DeviceAcceptable );
    DXUTSetCallbackD3D9DeviceCreated( OnD3D9CreateDevice );
    DXUTSetCallbackD3D9DeviceReset( OnD3D9ResetDevice );
    DXUTSetCallbackD3D9FrameRender( OnD3D9FrameRender );
    DXUTSetCallbackD3D9DeviceLost( OnD3D9LostDevice );
    DXUTSetCallbackD3D9DeviceDestroyed( OnD3D9DestroyDevice );
    DXUTSetCallbackDeviceChanging( ModifyDeviceSettings );
    DXUTSetCallbackMsgProc( MsgProc );
    DXUTSetCallbackFrameMove( OnFrameMove );

    // TODO: Perform any application-level initialization here

    // Initialize DXUT and create the desired Win32 window and Direct3D device for the application
    DXUTInit( true, true ); // Parse the command line and show msgboxes
    DXUTSetHotkeyHandling( true, true, true );  // handle the default hotkeys
    DXUTSetCursorSettings( true, true ); // Show the cursor and clip it when in full screen
    DXUTCreateWindow( L"3D_Shader_DisplacementMapping" );
    DXUTCreateDevice( true, 1024, 768 );

    // Start the render loop
    DXUTMainLoop();

    // TODO: Perform any application-level cleanup here

    return DXUTGetExitCode();
}

/*------------------------------------------------------------
	3D_Shader_DisplacementMapping.cpp -- achieve displacement mapping
			(c) Seamanj.2013/9/2
------------------------------------------------------------*/

struct Material
{
	float4 ambient;
	float4 diffuse;
	float4 specular;
	float  specularPower;
};

struct DirectionalLight
{
	float4 ambient;
	float4 diffuse;
	float4 specular;
	float3 directionInWorld;  
};

uniform extern float4x4 g_mWorld;
uniform extern float4x4 g_mWorldInv;
uniform extern float4x4 g_mWorldViewProj;
uniform extern float3   g_eyePositionInWorld;
uniform extern DirectionalLight g_structDirectionalLight;
uniform extern Material g_structMaterial;

// Two normal maps and displacement maps.
uniform extern texture  g_texNormalMap1;
uniform extern texture  g_texNormalMap2;
uniform extern texture  g_texDisplacementMap1;
uniform extern texture  g_texDisplacementMap2;

// Texture coordinate offset vectors for scrolling
// normal maps and displacement maps.
uniform extern float2   g_normalOffset1;
uniform extern float2   g_normalOffset2;
uniform extern float2   g_DisplacementOffset1;
uniform extern float2   g_DisplacementOffset2;



// User-defined scaling factors to scale the heights
// sampled from the displacement map into a more convenient
// range.
uniform extern float2 g_scaleHeights;

// Space between grids in x,z directions in local space
// used for finite differencing.
uniform extern float2 g_delta;

// Shouldn't be hardcoded, but ok for demo.
static const float DISPLACEMENTMAP_SIZE = 128.0f;
static const float DISPLACEMENTMAP_DELTA   = 1.0f / DISPLACEMENTMAP_SIZE;

sampler g_samNormalMap1 = sampler_state
{
	Texture = <g_texNormalMap1>;
	MinFilter = ANISOTROPIC;
	MaxAnisotropy = 12;
	MagFilter = LINEAR;
	MipFilter = LINEAR;
	AddressU  = WRAP;
    AddressV  = WRAP;
};

sampler g_samNormalMap2 = sampler_state
{
	Texture = <g_texNormalMap2>;
	MinFilter = ANISOTROPIC;
	MaxAnisotropy = 12;
	MagFilter = LINEAR;
	MipFilter = LINEAR;
	AddressU  = WRAP;
    AddressV  = WRAP;
};

sampler g_samDisplacementMap1 = sampler_state
{
	Texture = <g_texDisplacementMap1>;
	MinFilter = POINT;
	MagFilter = POINT;
	MipFilter = POINT;
	AddressU  = WRAP;
    AddressV  = WRAP;
};

sampler g_samDisplacementMap2 = sampler_state
{
	Texture = <g_texDisplacementMap2>;
	MinFilter = POINT;
	MagFilter = POINT;
	MipFilter = POINT;
	AddressU  = WRAP;
    AddressV  = WRAP;
};


struct OutputVS
{
    float4 posInHomogeneous : POSITION0;
    float3 toEyeInTangent    : TEXCOORD0;
    float3 lightDirectionInTangent : TEXCOORD1;
    float2 texcoord1 : TEXCOORD2;
    float2 texcoord2 : TEXCOORD3;
};

float3 CartesianToSpherical(float3 cartesianCoord,float radius)
{
	float gamma,theta;
	gamma = cartesianCoord.x / (g_delta.x * 127 / 2) * 3.14159265;
	theta = (g_delta.y * 127 / 2 - cartesianCoord.z) / (g_delta.y * 127 / 2) * 3.14159265 / 2;
	
	float sinGamma,cosGamma,sinTheta,cosTheta;
	sincos(gamma, sinGamma, cosGamma);
	sincos(theta, sinTheta, cosTheta);
	float3 sphericalCoord;
	radius = radius  + cartesianCoord.y ;
	sphericalCoord.x = radius * sinTheta * cosGamma;
	sphericalCoord.z = radius * sinTheta * sinGamma;
	sphericalCoord.y = radius * cosTheta;
	return sphericalCoord;
}


float DoDisplacementMapping(float2 texCoord1, float2 texCoord2)
{
	// Transform to texel space
    float2 texelPos = DISPLACEMENTMAP_SIZE * texCoord1;
        
    // Determine the lerp amounts.           
    float2 lerps = frac(texelPos);
    
	float height1[4];
	//由于移位纹理显示青色(即B,G通道都为1,所以应该是R通道存储的是高度
	height1[0] = tex2Dlod(g_samDisplacementMap1, float4(texCoord1, 0.0f, 0.0f)).r;
	height1[1] = tex2Dlod(g_samDisplacementMap1, float4(texCoord1, 0.0f, 0.0f)+float4(DISPLACEMENTMAP_DELTA, 0.0f, 0.0f, 0.0f)).r;
	height1[2] = tex2Dlod(g_samDisplacementMap1, float4(texCoord1, 0.0f, 0.0f)+float4(0.0f, DISPLACEMENTMAP_DELTA, 0.0f, 0.0f)).r;
	height1[3] = tex2Dlod(g_samDisplacementMap1, float4(texCoord1, 0.0f, 0.0f)+float4(DISPLACEMENTMAP_DELTA, DISPLACEMENTMAP_DELTA, 0.0f, 0.0f)).r;
	//这里取出来的值范围在[0,1]之内
	// Filter displacement map:
	float h1 = lerp( lerp( height1[0], height1[1], lerps.x ),
                     lerp( height1[2], height1[3], lerps.x ),
                     lerps.y );
	
	texelPos = DISPLACEMENTMAP_SIZE * texCoord2;
	lerps    = frac(texelPos);
	
	float height2[4];
	height2[0] = tex2Dlod(g_samDisplacementMap2, float4(texCoord2, 0.0f, 0.0f)).r;
	height2[1] = tex2Dlod(g_samDisplacementMap2, float4(texCoord2, 0.0f, 0.0f)+float4(DISPLACEMENTMAP_DELTA, 0.0f, 0.0f, 0.0f)).r;
	height2[2] = tex2Dlod(g_samDisplacementMap2, float4(texCoord2, 0.0f, 0.0f)+float4(0.0f, DISPLACEMENTMAP_DELTA, 0.0f, 0.0f)).r;
	height2[3] = tex2Dlod(g_samDisplacementMap2, float4(texCoord2, 0.0f, 0.0f)+float4(DISPLACEMENTMAP_DELTA, DISPLACEMENTMAP_DELTA, 0.0f, 0.0f)).r;
	
	// Filter displacement map:
	float h2 = lerp( lerp( height2[0], height2[1], lerps.x ),
                     lerp( height2[2], height2[3], lerps.x ),
                     lerps.y );
                   
	// Sum and scale the sampled heights.  
    return g_scaleHeights.x * h1 + g_scaleHeights.y * h2;

}
OutputVS myVertexEntry(float3 positionInLocal : POSITION0, 
                 float2 scaledTexCoord     : TEXCOORD0,//供法线纹理使用
                 float2 normalizedTexCoord : TEXCOORD1)//供移位纹理使用
{
    // Zero out our output.
	OutputVS outVS = (OutputVS)0;
	
	// Scroll vertex texture coordinates to animate waves.
	float2 DisplacementTexCoord1 = normalizedTexCoord + g_DisplacementOffset1;
	float2 DisplacementTexCoord2 = normalizedTexCoord + g_DisplacementOffset2;
	
	// Set y-coordinate of water grid vertices based on displacement mapping.
	positionInLocal.y = DoDisplacementMapping(DisplacementTexCoord1, DisplacementTexCoord2);
	
	// Estimate TBN-basis using finite differencing in local space.  
	float left = DoDisplacementMapping(DisplacementTexCoord1 + float2(DISPLACEMENTMAP_DELTA, 0.0f), 
	                        DisplacementTexCoord2 + float2(0.0f, DISPLACEMENTMAP_DELTA));
	float front = DoDisplacementMapping(DisplacementTexCoord1 + float2(DISPLACEMENTMAP_DELTA, 0.0f), 
	                        DisplacementTexCoord2 + float2(0.0f, DISPLACEMENTMAP_DELTA));  
	                        
	float3x3 TBN;                       
	TBN[0] = normalize(float3(1.0f, (left - positionInLocal.y)/g_delta.x, 0.0f)); //Tangent
	TBN[1] = normalize(float3(0.0f, (front - positionInLocal.y)/g_delta.y, -1.0f));//Binormal
	TBN[2] = normalize(cross(TBN[0], TBN[1]));//Normal
	
	// Matrix transforms from object space to tangent space.
	float3x3 toTangentSpace = transpose(TBN);
	
	// Transform eye position to local space.
	float3 eyePositionInLocal = mul(float4(g_eyePositionInWorld, 1.0f), g_mWorldInv).xyz;
	
	// Transform to-eye vector to tangent space.
	float3 toEyeInLocal = eyePositionInLocal - positionInLocal;
	outVS.toEyeInTangent = mul(toEyeInLocal, toTangentSpace);
	
	// Transform light direction to tangent space.
	float3 lightDirectionInLocal = mul(float4(g_structDirectionalLight.directionInWorld, 0.0f), g_mWorldInv).xyz;
	outVS.lightDirectionInTangent  = mul(lightDirectionInLocal, toTangentSpace);
	
	positionInLocal = CartesianToSpherical(positionInLocal, 30.0f);
	// Transform to homogeneous clip space.
	
	outVS.posInHomogeneous = mul(float4(positionInLocal, 1.0f), g_mWorldViewProj);
	
	// Scroll texture coordinates.
	outVS.texcoord1 = scaledTexCoord+ g_normalOffset1;
	outVS.texcoord2 = scaledTexCoord+ g_normalOffset2;
	
	// Done--return the output.
    return outVS;
}

float4 myPixelEntry(float3 toEyeInTangent    : TEXCOORD0,
					float3 lightDirectionInTangent : TEXCOORD1,
				    float2 texcoord1      : TEXCOORD2,
				    float2 texcoord2      : TEXCOORD3) : COLOR
{
	// Interpolated normals can become unnormal--so normalize.
	// Note that toEyeW and normalW do not need to be normalized
	// because they are just used for a reflection and environment
	// map look-up and only direction matters.
	toEyeInTangent    = normalize(toEyeInTangent);
	lightDirectionInTangent = normalize(lightDirectionInTangent);
	
	// Light vector is opposite the direction of the light.
	float3 toLightInTangent = -lightDirectionInTangent;
	
	// Sample normal map.
	float3 normalInTangent1 = tex2D(g_samNormalMap1, texcoord1);
	float3 normalInTangent2 = tex2D(g_samNormalMap2, texcoord2);
	
	// Expand from [0, 1] compressed interval to true [-1, 1] interval.
    normalInTangent1 = 2.0f * normalInTangent1 - 1.0f;
    normalInTangent2 = 2.0f * normalInTangent2 - 1.0f;
    
	// Average the two vectors.
	float3 normalInTangent = normalize( 0.5f * ( normalInTangent1 + normalInTangent2));
	
	// Compute the reflection vector.
	float3 r = reflect(lightDirectionInTangent, normalInTangent);
	
	// Determine how much (if any) specular light makes it into the eye.
	float s  = pow(max(dot(r, toEyeInTangent), 0.0f), g_structMaterial.specularPower);

	// Determine the diffuse light intensity that strikes the vertex.
	float d = max(dot(toLightInTangent, normalInTangent), 0.0f);
	
	// If the diffuse light intensity is low, kill the specular lighting term.
	// It doesn't look right to add specular light when the surface receives 
	// little diffuse light.
	if(d <= 0.0f)
	     s = 0.0f;
	
	// Compute the ambient, diffuse and specular terms separatly. 
	float3 spec = s * ( g_structMaterial.specular * g_structDirectionalLight.specular).rgb;
	float3 diffuse = d * (g_structMaterial.diffuse*g_structDirectionalLight.diffuse.rgb);
	float3 ambient = g_structMaterial.ambient * g_structDirectionalLight.ambient;
	
	float3 final = ambient + diffuse + spec;
	
	// Output the color and the alpha.
    return float4(final, g_structMaterial.diffuse.a);
}

technique myTech
{
    pass P0
    {
		//FillMode = WIREFRAME;
        // Specify the vertex and pixel shader associated with this pass.
        vertexShader = compile vs_3_0 myVertexEntry();
        pixelShader  = compile ps_3_0 myPixelEntry();
        
    }    
}

好了,收工,睡觉去了,这几天要写个柏林噪声出来!!!!!!!!!!!!

可执行程序以及相关源代码请点击这里下载

抱歉!评论已关闭.