现在的位置: 首页 > 综合 > 正文

Induced norm

2013年01月24日 ⁄ 综合 ⁄ 共 1165字 ⁄ 字号 评论关闭

 

Induced
norm

If vector norms on Km and Kn are
given (K is field of real or complex
numbers
), then one defines the corresponding induced norm or operator norm on the space
of m-by-n matrices as the following maxima:

 \begin{align} \|A\| &= \max\{\|Ax\| <wbr>: x\in K^n \mbox{ with }\|x\|\le 1\} \ &= \max\{\|Ax\| <wbr>: x\in K^n \mbox{ with }\|x\| = 1\} \ &= \max\left\{\frac{\|Ax\|}{\|x\|} <wbr>: x\in K^n \mbox{ with }x\ne 0\right\}. \end{align}

These are different from the entrywise p-norms and the Schatten p-norms for matrices treated below, which are also usually denoted by  \left \| A \right \| _p .

If m n and one uses the same norm on the domain and the range, then the induced operator norm is a sub-multiplicative matrix norm.

The operator norm corresponding to the p-norm for vectors is:

 \left \| A \right \| _p = \max \limits _{x \ne 0} \frac{\left \| A x\right \| _p}{\left \| x\right \| _p}.

In the case of p = 1 and p=\infty,
the norms can be computed as:

 \left \| A \right \| _1 = \max \limits _{1 \leq j \leq n} \sum _{i=1} ^m | a_{ij} |,  which
is simply the maximum absolute column sum of the matrix
 \left \| A \right \| _\infty = \max \limits _{1 \leq i \leq m} \sum _{j=1} ^n | a_{ij} |,  which
is simply the maximum absolute row sum of the matrix

For example, if the matrix A is defined by

 A = \begin{bmatrix} 3 & 5 & 7 \ 2 & -6 & 4 \ 0 & 2 & 8 \ \end{bmatrix},

then we have ||A||1 = 7+4+8 = 19. and ||A|| =
3+5+7 = 15

In the special case of p = 2 (the Euclidean norm)
and m n (square matrices), the induced matrix norm is the spectral norm. The spectral norm of a matrix A is the largest singular
value
 of A or the square root of the largest eigenvalue of the positive-semidefinite
matrix
 A*A:

\left \| A \right \| _2=\sqrt{\lambda_{\text{max}}(A^* A)}

where A* denotes the conjugate
transpose
 of A.

Any induced norm satisfies the inequality

\left \| A \right \| \ge \rho(A),

where ρ(A) is the spectral radius of A.
In fact, it turns out that ρ(A) is the infimum of all induced norms of A.

Furthermore, we have the spectral radius formula:

\lim_{r\rarr\infty}\|A^r\|^{1/r}=\rho(A).

抱歉!评论已关闭.