现在的位置: 首页 > 综合 > 正文

RTP/RTCP工程实践与问题解决方案(合集)

2013年05月04日 ⁄ 综合 ⁄ 共 15800字 ⁄ 字号 评论关闭
文章目录

基于RTP协议的IP电话QoS监测及提高策略

        本文转自 http://jxic.jiangxi.gov.cn/Html/2008321143656-1.html

1. 概述 

        随着Internet和多媒体技术的飞速发展,Internet已由早期的单一数据传输网向多媒体数据(视频、音频、文本等)综合传输网发展。但Internet提供的只是尽力而为的服务,不能满足多媒体应用程序对传输延迟、包丢失、抖动控制等要求,为了能在传统的IP网上运行多媒体程序,必须考虑服务质量(Ouality of Service,QoS)。QoS可用延迟、抖动、吞吐量、丢包率等参数来描述。为了支持网络的实时传输服务,互联网工作组(Internet
Engineering Task Force,IETF)制定了实时传输协议(Real-time Transport Protocol,RTP)。RTP是专门为交互式音频、视频、仿真数据等实时媒体应用而设计的轻型传输协议,已广泛应用于各种多媒体传输系统中。IP电话作为一种新兴业务,因其低廉的话费受到广大用户的欢迎。但IP电话中的通话时延、话音失真一直是制约IP电话迅速发展的“瓶颈”。如何确保IP电话的QoS,是IP电话成功与否的关键。

  结合IP电话系统,从音频实时传输和控制两方面来讨论RTP及实时传输控制协议(Real-time TransportControl Protocol,RTCP)应用技术,分析影响媒体流实时传输的因素。最后从实际实验、应用的角度,讨论如何获得当前Internet可行的QoS监测,并针对QoS质量保证提出切实可行的解决方案。

2 实时传输协议RTP


  RTP是用于Internet上针对多媒体数据流的一种传输协议,被定义为在一对一或一对多的传输情况下工作,其目的是提供时间信息和实现流同步。RTP通常使用用户数据报协议(User Datagram Protocol,UDP)来传送数据,但RTP也可以在传输控制协议(Transmission Control Protocol,TCP)或异步传输模式(Asynchronous Transfer Mode,ATM)等其他协议之上工作。当应用程序开始一个RTP会话时将使用2个端口:1个给RTP,1个给RTCP。RTP本身并不能为按顺序传送数据包提供可靠的传送机制,也不提供流量控制或拥塞控制,它依靠RTCP提供这些服务。通常RTP算法并不作为一个独立的网络层来实现,而是作为应用程序代码的一部分,RTCP和RTP一起提供流量控制和拥塞控制服务。在RTP会话期间,参与者周期性地传送RTCP包,RTCP包中含有已发送的数据包的数量、丢失的数据包的数量等统计资料,因此,服务器可以利用这些信息动态地改变传输速率,甚至改变有效载荷类型。RTP和RTCP配合使用能以有效的反馈和最小的开销使传输效率最佳化,因而特别适合传送网上的实时数据。

2.1 RTP数据包


  RTP数据包由12个字节的固定RTP头和不定长的连续媒体数据(视频帧或音频帧)组成。RTP协议的数据包格式如图1所示。





RTP报文头部分各个参数的意义如下:

  1. 版本(V):2bit版本号置2。

  2. 扩展位(Extension-X):由使用的RTP框架定义。
  3. 填充(P):用以说明包尾是否附有非负荷信息。
  4. 负载类型(PT):对音频或视频等数据类型予以说明,并说明数据的编码方式。
  5. 标志位(Marker-M):标志位由具体的应用框架定义。
  6. 序列号(Sequence Number):为了安全,服务器从一个随机初始化值开始,每发送一个RTP数据包序列号增加1。客户端可根据序列号重新排列数据包的顺序,并对丢失、损坏和重复的数据包进行检测。
  7. 时间戳(Timestamp):RTP时间戳为同步不同的媒体流提供采样时间,用于重新建立原始音频或视频的时序。另外,它还可以帮助接收方确定数据到达时间的一致性或变化(有时被称为抖动)。
  8. 同步源标识(SSRG):帮助接收方利用发送方生成的唯一的数值来区分多个同时的数据流。SRC必须是一个严格的随机数。
  9. 作用标识(CSRC):网络中使用混合器时,混合器会在RTP报文头部之后插入新的同步源标识,其作用是区分多个同时的数据流。

2.2 RTP控制协议——RTCP

  在RTP会话中,RTCP周期性地给所有参与者发送控制包,应用程序或第三方监控者接受RTCP控制包,从中获取控制信息,估计当前QoS,以便进行传输控制、拥塞处理、错误诊断等。

  RTCP报文头部参数首先要区别携带不同控制信息的RTCP报文的类型,RTCP报文的类型主要有以下几种:

        (1)SR:发送报告,当前活动发送者发送、接收统计;

        (2)RR:接收报告,非活动发送者接收统计;

        (3)SDES:源描述项,包括CNAME;

        (4)BYB:表示结束;

        (5)APP:应用特定函数。

        其中最主要的RTCP报文是SR和RR。通常SR报文占总RTCP包数量的25%,RR报文占75%。

        通过这5种控制包,RTCP协议实现了以下4个主要功能:

  (1)提供数据发布的质量反馈,这是RTCP最主要的功能。作为RTP传输协议的一部分,与其他传输协议的流和阻塞控制有关。反馈对自适应编码控制直接起作用。反馈功能由RTCP发送者和接收者报告执行。

  (2)送带有称作规范名字(CNAME)的RTP源持久传输层标识。如发现冲突,或程序重新启动,SSRC标识可改变,接收者需要CNAME跟踪参加者。接收者也需要CNAME与相关RTP连接中给定的几个数据流联系。

  (3)根据参与RTP会话的数量调整RTCP的发送速率。

  (4)传送最小连接控制信息,如参加者辨识。最可能用在“松散控制”连接,那里参加者自由进入或离开,没有成员控制或参数协调,RTCP充当通往所有参加者的方便通道,但不必支持应用的所有控制通信要求。

3 由RTP包分析影响多媒体数据流实时传输的因素

  随着VoIP领域不断发展,满足网络QoS检测需求的应用也成为引人注目的焦点。IP QoS是指IP的服务质量,也是指IP数据流通过网络时的性能。目的就是向用户提供端到端的服务质量保证。有一套度量指标,包括业务可用性、延迟、可变延迟、吞吐量和丢包率等,现就项目中在上海阿尔卡特网络支援系统有限公司NGN实验室中所得到的RTP和RTCP包进行分析,主要研究其中3个因素,从而达到对实时流媒体数据进行监控的目的。

3.1 抖动

  抖动会引起端到端时延的增加(指网络造成的包与包之间的时差),引起语音质量的降低。在音频数据的传输过程中,由于传输延迟的不稳定而造成相邻数据包接收时刻间隔不稳定,从而产生抖动。消除抖动的主要依据就是RTP包的首部中包含的时间戳字段。时间戳标志着该段音频数据中第一个采样点的采样时间。每两个RTP包的抖动可以用其RTP包中的RTP时戳和接收的时刻进行计算。

  关于包的传送时间,接收者最先了解到的是它的时间戳和接收者当前时间之间的差值。该差值是:Di=Ri-Si,表示从包被盖上戳开始,到它在信源的输出链路上被实际发送为止,其中的传送时间和某个机器时间。RFC 1889建议使用NTP来完成端点的端到端同步,但是也有非同步端点实现存在。

  包i和包j之间增加的延迟差(二阶效应)计算公式如下:设Rj代表第j个包的接受时刻,Sj代表第j个包的RTP时戳值,则第i个RTP报文与第j个RTP报文间的抖动为D(i,j)


  在生成RTCP报文时,其应当传送的时延抖动的值可用以下公式进行递推计算


  其中:J为要传送的时延抖动值。对后一项除以16是为了消除连带噪声。

  抖动是分组交换的必然结果影响抖动的因素一般和网络的拥塞程度有关。由于语音同数据在同一条物理线上传输,语音数据通常会由于数据报文占用了物理线路而导致阻塞。解决抖动通常采用缓冲队列来解决(在网关、IAD上均有JitterBuffer来消除抖动),每收到一个数据包,先将其放人缓冲区,应用程序在缓冲区另一端取数据,只要缓冲区足够大,抖动一定能被平滑掉。而错序是由于网络拥挤而使某些后发的数据包先到达收端而引起的,只要设置足够大的缓冲区来对数据包重新排序,就能解决这个问题。或者需要IP承载网采用QoS策略,保证语音数据的最高优先级,得到最先发送获得高带宽也是解决抖动问题的主要手段。

3.2 时延

  时延是处理和传输导致数据不能按时到达的延迟,是影响流媒体数据传输的一个主要因素。话音信号在端到端传输过程中受到的时延迟滞通常包括:编解码器引入的时延、打包时延、去抖动时延、承载网上的传输节点中排队、服务处理时延。这些时延累计的总和将影响话质,导致回声干扰和交互性的劣化。对于VoIP系统,规定时延一般控制在150 ms内。

  分组语音网络中的延迟可分为固定延迟和可变延迟。前者相对容易得到,笔者不作考虑。在计算丢包率时,主要考虑可变延迟。丢包判定等待时限Twait设定的大小在很大程度上影响丢包率计算的准确性,也就是可变延迟的影响,它与语音包的传输延迟Ttrf有关,Twait越大等待时限就越长。但不能超过保证语音流连续播放的时间上限Tmax(Tmax一般取250 ms),即:Twait=min(Twait,Tmax)。Ttrf可根据RTCP协议的SR控制包中的NTP(Network
Time Protoco1)时间戳计算得到,见图2。


  根据RTP头中的sequence number域,可以在接收端轻易发现包丢失,为丢包修复奠定基础。在实际使用中发现,绝大多数丢包单个丢包,两个或两个以上包丢失的比例较小。针对单个包的丢失,传统的丢包处理方法有两种:一种方法是重发,但在传输语音数据时,重发将引起播放质量下降,出现无法识别的话音或回音现象;另一种方法是忽略,这同样会影响播放质量。更好的方案使用拆分法优化丢包损失。拆分法的基本思想是:在发送端把原来要打入一个RTP包的话音数据按照采样间隔分成两块,然后采用相同的压缩算法分别压缩、打入RTP包,并标记相同的时印进行传输。在接收方执行相反的过程,把解压缩后的数据采样、合并、回放。

  如果某个RTP包在传输过程中丢失,那么丢失的只是原数据包按采样间隔的一半信息,接收端可以用接受到的另一半信息,利用插值等方法恢复出原话音包的大部分信息,从而使话音质量不至于下降太多。拆分法的主要思想如图4所示。


4 结束语

  对音频数据的实时传输问题进行了详细分析,在分析RTP协议的基础上,探讨了基于RTP协议的QoS动态监测的一些方法,并提出了解决在流媒体中存在的语音实时传输质量保证的策略。避免语音通信实时性差的缺点,减小了网络延时使抖动的影响减低,改善了语音传输效果。目前,IP电话用户数每年正以239%的速度增长。下一步将以此为依据设计出基于RTP的一个应用模型,进行深层开发研究。







 

==========================================================================================

谈谈RTP传输中的负载类型和时间戳

          本文转自 http://ticktick.blog.51cto.com/823160/350142

 

          最近被RTP的负载类型和时间戳搞郁闷了,一个问题调试了近一周,终于圆满解决,回头看看,发现其实主要原因还是自己没有真正地搞清楚RTP协议中负载类型和时间戳的含义。虽然做RTP传输,有着JrtplibOrtp这两个强大的库支持,一个是c++接口,一个是c语言接口,各有各的特点,各有各的应用环境,但是仅仅有库就能解决一切问题吗?可能仿照着一些例子程序,你能够完成主要的功能,但一旦问题发生了,不清楚原理你是很难定位和解决问题的,所以在此,用我的经验劝劝大家,磨刀不误砍柴工,做应用还是先把原理搞清楚再动手吧……
          看这篇文章之前,首先你应该知道什么是RTP协议,可以去看RTP协议原文(RFC3550协议),也可以看一些网友对RTP协议的讲解的文章,很多,这里我提供一篇我个人觉得写得还不错的:http://blog.csdn.net/bripengandre/archive/2008/04/01/2238818.aspx 。

          好,下面言归正传,首先谈谈RTP传输中的负载类型吧。

          首先,看RTP协议包头的格式:
          

          10~16 Bit为PT域,指的就是负载类型(PayLoad),负载类型定义了RTP负载的格式,协议原文说该域由具体应用决定其解释。
          目前,负载类型主要用来告诉接收端(或者播放器)传输的是哪种类型的媒体(例如G.729,H.264,MPEG-4等),这样接收端(或者播放器)才知道了数据流的格式,才会调用适当的编解码器去解码或者播放,这就是负载类型的主要作用。
          就ORTP库而言,负载类型定义如下:
        

          每一种负载类型都有着其独特的参数,这里基本上涵盖了当前主流的一些媒体类型,例如pcmu 、g.729、h.263(很奇怪,竟然没有定义h.264)、mpeg-4等等。Jrtplib库应该也有相类似的定义,你可以去找找源码,在此我就不再赘述了。

          在ORTP库和JRTplib库中,都提供了设置RTP负载类型的函数,千万要记得根据实际的应用进行设置,我就是当时没有注意,使用ORTP默认的pcmu音频的负载类型,传输H.264编码的视频数据,结果传输中一直有问题,困扰我好久好久。

          好了,再说说RTP的时间戳吧。

          首先,了解几个基本概念:

          时间戳单位:时间戳计算的单位不是秒之类的单位,而是由采样频率所代替的单位,这样做的目的就是为了是时间戳单位更为精准。比如说一个音频的采样频率为8000Hz,那么我们可以把时间戳单位设为1 / 8000。
          时间戳增量:相邻两个RTP包之间的时间差(以时间戳单位为基准)。
          采样频率:  每秒钟抽取样本的次数,例如音频的采样率一般为8000Hz
          帧率:      每秒传输或者显示帧数,例如25f/s
   

          再看看RTP时间戳课本中的定义:

          RTP包头的第2个32Bit即为RTP包的时间戳,Time Stamp ,占32位。
          时间戳反映了RTP分组中的数据的第一个字节的采样时刻。在一次会话开始时的时间戳初值也是随机选择的。即使是没有信号发送时,时间戳的数值也要随时间不断的增加。接收端使用时间戳可准确知道应当在什么时间还原哪一个数据块,从而消除传输中的抖动。时间戳还可用来使视频应用中声音和图像同步。
          在RTP协议中并没有规定时间戳的粒度,这取决于有效载荷的类型。因此RTP的时间戳又称为媒体时间戳,以强调这种时间戳的粒度取决于信号的类型。例如,对于8kHz采样的话音信号,若每隔20ms构成一个数据块,则一个数据块中包含有160个样本(0.02×8000=160)。因此每发送一个RTP分组,其时间戳的值就增加160。

          官方的解释看懂没?没看懂?没关系,我刚开始也没看懂,那就听我的解释吧。

          首先,时间戳就是一个值,用来反映某个数据块的产生(采集)时间点的,后采集的数据块的时间戳肯定是大于先采集的数据块的。有了这样一个时间戳,就可以标记数据块的先后顺序。
          第二,在实时流传输中,数据采集后立刻传递到RTP模块进行发送,那么,其实,数据块的采集时间戳就直接作为RTP包的时间戳。
          第三,如果用RTP来传输固定的文件,则这个时间戳就是读文件的时间点,依次递增。这个不再我们当前的讨论范围内,暂时不考虑。
          第四,时间戳的单位采用的是采样频率的倒数,例如采样频率为8000Hz时,时间戳的单位为1 / 8000 ,在Jrtplib库中,有设置时间戳单位的函数接口,而ORTP库中根据负载类型直接给定了时间戳的单位(音频负载1/8000,视频负载1/90000)
          第五,时间戳增量是指两个RTP包之间的时间间隔,详细点说,就是发送第二个RTP包相距发送第一个RTP包时的时间间隔(单位是时间戳单位)。
          如果采样频率为90000Hz,则由上面讨论可知,时间戳单位为1/90000,我们就假设1s钟被划分了90000个时间块,那么,如果每秒发送25帧,那么,每一个帧的发送占多少个时间块呢?当然是 90000/25 = 3600。因此,我们根据定义“时间戳增量是发送第二个RTP包相距发送第一个RTP包时的时间间隔”,故时间戳增量应该为3600。
          在Jrtplib中好像不需要自己管理时间戳的递增,由库内部管理。但在ORTP中每次数据的发送都需要自己传入时间戳的值,即自己需要每次发完一个RTP包后,累加时间戳增量,不是很方便,这就需要自己对RTP的时间戳有比较深刻地理解,我刚开始就是因为没搞清楚,随时设置时间戳增量导致传输一直有问题,困扰我好久。

          好了,关于RTP的负载类型和时间戳的介绍就到这里了,这次通过解决RTP传输中的问题学到了不少知识,在此分享希望对大家有用。有说得不正确的地方欢迎高手指教,也可以来信交流:lujun.hust@gmail.com

========================================================================================

Linux下几种RTP协议实现的比较和JRTPLIB编程讲解

        本文转自http://aphrodit.blog.sohu.com/133605028.html

 

1. 概述

        流媒体指的是在网络中使用流技术传输的连续时基媒体,其特点是在播放前不需要下载整个文件,而是采用边下载边播放的方式,它是视频会议、 IP电话等应用场合的技术基础。RTP是进行实时流媒体传输的标准协议和关键技术,本文介绍如何在Linux下利用JRTPLIB进行实时流媒体编程。 
  
         随着Internet的日益普及,在网络上传输的数据已经不再局限于文字和图形,而是逐渐向声音和视频等多媒体格式过渡。目前在网络上传输音频/视频(Audio/Video,简称A/V)等多媒体文件时,基本上只有下载和流式传输两种选择。通常说来,A/V文件占据的存储空间都比较大,在带宽受限的网络环境中下载可能要耗费数分钟甚至数小时,所以这种处理方法的延迟很大。如果换用流式传输的话,声音、影像、动画等多媒体文件将由专门的流媒体服务器负责向用户连续、实时地发送,这样用户可以不必等到整个文件全部下载完毕,而只需要经过几秒钟的启动延时就可以了,当这些多媒体数据在客户机上播放时,文件的剩余部分将继续从流媒体服务器下载。

        流(Streaming)是近年在Internet上出现的新概念,其定义非常广泛,主要是指通过网络传输多媒体数据的技术总称。流媒体包含广义和狭义两种内涵:广义上的流媒体指的是使音频和视频形成稳定和连续的传输流和回放流的一系列技术、方法和协议的总称,即流媒体技术;狭义上的流媒体是相对于传统的下载-回放方式而言的,指的是一种从Internet上获取音频和视频等多媒体数据的新方法,它能够支持多媒体数据流的实时传输和实时播放。通过运用流媒体技术,服务器能够向客户机发送稳定和连续的多媒体数据流,客户机在接收数据的同时以一个稳定的速率回放,而不用等数据全部下载完之后再进行回放。

        由于受网络带宽、计算机处理能力和协议规范等方面的限制,要想从Internet上下载大量的音频和视频数据,无论从下载时间和存储空间上来讲都是不太现实的,而流媒体技术的出现则很好地解决了这一难题。目前实现流媒体传输主要有两种方法:顺序流(progressive streaming)传输和实时流(realtime streaming)传输,它们分别适合于不同的应用场合。

顺序流传输

        顺序流传输采用顺序下载的方式进行传输,在下载的同时用户可以在线回放多媒体数据,但给定时刻只能观看已经下载的部分,不能跳到尚未下载的部分,也不能在传输期间根据网络状况对下载速度进行调整。由于标准的HTTP服务器就可以发送这种形式的流媒体,而不需要其他特殊协议的支持,因此也常常被称作HTTP 流式传输。顺序流式传输比较适合于高质量的多媒体片段,如片头、片尾或者广告等。

实时流传输

        实时流式传输保证媒体信号带宽能够与当前网络状况相匹配,从而使得流媒体数据总是被实时地传送,因此特别适合于现场事件。实时流传输支持随机访问,即用户可以通过快进或者后退操作来观看前面或者后面的内容。从理论上讲,实时流媒体一经播放就不会停顿,但事实上仍有可能发生周期性的暂停现象,尤其是在网络状况恶化时更是如此。与顺序流传输不同的是,实时流传输需要用到特定的流媒体服务器,而且还需要特定网络协议的支持。

        实时传输协议(Real-time Transport Protocol,PRT)是在Internet上处理多媒体数据流的一种网络协议,利用它能够在一对一(unicast,单播)或者一对多(multicast,多播)的网络环境中实现传流媒体数据的实时传输。RTP通常使用UDP来进行多媒体数据的传输,但如果需要的话可以使用TCP或者 ATM等其它协议,整个RTP协议由两个密切相关的部分组成:RTP数据协议和RTP控制协议。实时流协议(Real Time Streaming Protocol,RTSP)最早由Real
Networks和Netscape公司共同提出,它位于RTP和RTCP之上,其目的是希望通过IP网络有效地传输多媒体数据。

 

        RTSP,RTP,RTCP的区别:RTSP发起/终结流媒体、RTP传输流媒体数据 、RTCP对RTP进行控制,同步。


2. 协议

2.1 RTP数据协议

        RTP数据协议负责对流媒体数据进行封包并实现媒体流的实时传输,每一个RTP数据报都由头部(Header)和负载(Payload)两个部分组成,其中头部前12个字节的含义是固定的,而负载则可以是音频或者视频数据。RTP数据报的头部格式如图1所示:
        其中比较重要的几个域及其意义如下:

         CSRC记数(CC)  表示CSRC标识的数目。CSRC标识紧跟在RTP固定头部之后,用来表示RTP数据报的来源,RTP协议允许在同一个会话中存在多个数据源,它们可以通过RTP混合器合并为一个数据源。例如,可以产生一个CSRC列表来表示一个电话会议,该会议通过一个 RTP混合器将所有讲话者的语音数据组合为一个RTP数据源。 
        负载类型(PT)  标明RTP负载的格式,包括所采用的编码算法、采样频率、承载通道等。例如,类型2表明该RTP数据包中承载的是用ITU G.721算法编码的语音数据,采样频率为8000Hz,并且采用单声道。 
        序列号  用来为接收方提供探测数据丢失的方法,但如何处理丢失的数据则是应用程序自己的事情,RTP协议本身并不负责数据的重传。 
        时间戳  记录了负载中第一个字节的采样时间,接收方能够时间戳能够确定数据的到达是否受到了延迟抖动的影响,但具体如何来补偿延迟抖动则是应用程序自己的事情。 
        从RTP 数据报的格式不难看出,它包含了传输媒体的类型、格式、序列号、时间戳以及是否有附加数据等信息,这些都为实时的流媒体传输提供了相应的基础。RTP协议的目的是提供实时数据(如交互式的音频和视频)的端到端传输服务,因此在RTP中没有连接的概念,它可以建立在底层的面向连接或面向非连接的传输协议之上;RTP也不依赖于特别的网络地址格式,而仅仅只需要底层传输协议支持组帧(Framing)和分段(Segmentation)就足够了;另外RTP
本身还不提供任何可靠性机制,这些都要由传输协议或者应用程序自己来保证。在典型的应用场合下,RTP 一般是在传输协议之上作为应用程序的一部分加以实现的。

2.2 RTCP控制协议

        RTCP 控制协议需要与RTP数据协议一起配合使用,当应用程序启动一个RTP会话时将同时占用两个端口,分别供RTP 和RTCP使用。RTP本身并不能为按序传输数据包提供可靠的保证,也不提供流量控制和拥塞控制,这些都由RTCP来负责完成。通常RTCP会采用与 RTP相同的分发机制,向会话中的所有成员周期性地发送控制信息,应用程序通过接收这些数据,从中获取会话参与者的相关资料,以及网络状况、分组丢失概率等反馈信息,从而能够对服务质量进行控制或者对网络状况进行诊断。

        RTCP协议的功能是通过不同的RTCP数据报来实现的,主要有如下几种类型:

        SR  发送端报告,所谓发送端是指发出RTP数据报的应用程序或者终端,发送端同时也可以是接收端。 
        RR  接收端报告,所谓接收端是指仅接收但不发送RTP数据报的应用程序或者终端。 
        SDES  源描述,主要功能是作为会话成员有关标识信息的载体,如用户名、邮件地址、电话号码等,此外还具有向会话成员传达会话控制信息的功能。 
        BYE  通知离开,主要功能是指示某一个或者几个源不再有效,即通知会话中的其他成员自己将退出会话。 
        APP  由应用程序自己定义,解决了RTCP的扩展性问题,并且为协议的实现者提供了很大的灵活性。 
        RTCP数据报携带有服务质量监控的必要信息,能够对服务质量进行动态的调整,并能够对网络拥塞进行有效的控制。由于RTCP数据报采用的是多播方式,因此会话中的所有成员都可以通过RTCP数据报返回的控制信息,来了解其他参与者的当前情况。

        在一个典型的应用场合下,发送媒体流的应用程序将周期性地产生发送端报告SR,该RTCP数据报含有不同媒体流间的同步信息,以及已经发送的数据报和字节的计数,接收端根据这些信息可以估计出实际的数据传输速率。另一方面,接收端会向所有已知的发送端发送接收端报告RR,该RTCP数据报含有已接收数据报的最大序列号、丢失的数据报数目、延时抖动和时间戳等重要信息,发送端应用根据这些信息可以估计出往返时延,并且可以根据数据报丢失概率和时延抖动情况动态调整发送速率,以改善网络拥塞状况,或者根据网络状况平滑地调整应用程序的服务质量。

2.3 RTSP实时流协议

        作为一个应用层协议,RTSP提供了一个可供扩展的框架,它的意义在于使得实时流媒体数据的受控和点播变得可能。总的说来,RTSP是一个流媒体表示协议,主要用来控制具有实时特性的数据发送,但它本身并不传输数据,而是必须依赖于下层传输协议所提供的某些服务。RTSP 可以对流媒体提供诸如播放、暂停、快进等操作,它负责定义具体的控制消息、操作方法、状态码等,此外还描述了与RTP间的交互操作。

        RTSP 在制定时较多地参考了HTTP/1.1协议,甚至许多描述与HTTP/1.1完全相同。RTSP之所以特意使用与HTTP/1.1类似的语法和操作,在很大程度上是为了兼容现有的Web基础结构,正因如此,HTTP/1.1的扩展机制大都可以直接引入到RTSP 中。

        由RTSP 控制的媒体流集合可以用表示描述(Presentation Description)来定义,所谓表示是指流媒体服务器提供给客户机的一个或者多个媒体流的集合,而表示描述则包含了一个表示中各个媒体流的相关信息,如数据编码/解码算法、网络地址、媒体流的内容等。

        虽然RTSP服务器同样也使用标识符来区别每一流连接会话(Session),但RTSP连接并没有被绑定到传输层连接(如TCP等),也就是说在整个 RTSP连接期间,RTSP用户可打开或者关闭多个对RTSP服务器的可靠传输连接以发出RTSP 请求。此外,RTSP连接也可以基于面向无连接的传输协议(如UDP等)。

        RTSP协议目前支持以下操作:

         检索媒体  允许用户通过HTTP或者其它方法向媒体服务器提交一个表示描述。如表示是组播的,则表示描述就包含用于该媒体流的组播地址和端口号;如果表示是单播的,为了安全在表示描述中应该只提供目的地址。 
         邀请加入  媒体服务器可以被邀请参加正在进行的会议,或者在表示中回放媒体,或者在表示中录制全部媒体或其子集,非常适合于分布式教学。 
         添加媒体  通知用户新加入的可利用媒体流,这对现场讲座来讲显得尤其有用。与HTTP/1.1类似,RTSP请求也可以交由代理、通道或者缓存来进行处理。

        RTP 是目前解决流媒体实时传输问题的最好办法,如果需要在Linux平台上进行实时流媒体编程,可以考虑使用一些开放源代码的RTP库,如LIBRTP、 JRTPLIB等。JRTPLIB是一个面向对象的RTP库,它完全遵循RFC 1889设计,在很多场合下是一个非常不错的选择,下面就以JRTPLIB为例,讲述如何在Linux平台上运用RTP协议进行实时流媒体编程。

3. 实例

3.1 环境搭建

        JRTPLIB 是一个用C++语言实现的RTP库,目前已经可以运行在Windows、Linux、FreeBSD、 Solaris、Unix和VxWorks等多种操作系统上。要为Linux 系统安装JRTPLIB,首先从JRTPLIB的网站(http: //lumumba.luc.ac.be/jori/jrtplib/jrtplib.html)下载最新的源码包,此处使用的是jrtplib-
2.7b.tar.bz2。假设下载后的源码包保存在/usr/local/src目录下,执行下面的命令可以对其进行解压缩:

[root@linuxgam src]# bzip2 -dc jrtplib-2.7b.tar.bz2 | tar xvf -

        接下去需要对JRTPLIB进行配置和编译:

[root@linuxgam src]# cd jrtplib-2.7
[root@linuxgam jrtplib-2.7b]# ./configure 
[root@linuxgam jrtplib-2.7b]# make

        最后再执行如下命令就可以完成JRTPLIB的安装:

[root@linuxgam jrtplib-2.7b]# make install

3.2 初始化

        在使用JRTPLIB进行实时流媒体数据传输之前,首先应该生成RTPSession类的一个实例来表示此次RTP会话,然后调用Create() 方法来对其进行初始化操作。RTPSession类的Create()方法只有一个参数,用来指明此次RTP会话所采用的端口号。清单1给出了一个最简单的初始化框架,它只是完成了RTP会话的初始化工作,还不具备任何实际的功能。

#include "rtpsession.h"
int main(void)
{
	RTPSession sess;
	sess.Create(5000);
	return 0;
}

        如果RTP会话创建过程失败,Create()方法将会返回一个负数,通过它虽然可以很容易地判断出函数调用究竟是成功的还是失败的,但却很难明白出错的原因到底什么。JRTPLIB采用了统一的错误处理机制,它提供的所有函数如果返回负数就表明出现了某种形式的错误,而具体的出错信息则可以通过调用 RTPGetErrorString()函数得到。RTPGetErrorString()函数将错误代码作为参数传入,然后返回该错误代码所对应的错误信息。清单2给出了一个更加完整的初始化框架,它可以对RTP会话初始化过程中所产生的错误进行更好的处理:

#include <stdio.h>
#include "rtpsession.h"
int main(void)
{
	RTPSession sess;
	int status;
	char* msg;
	sess.Create(6000);
	msg = RTPGetErrorString(status);
	printf("Error String: %s//n", msg);
	return 0;
}

        设置恰当的时戳单元,是RTP会话初始化过程所要进行的另外一项重要工作,这是通过调用RTPSession类的 SetTimestampUnit()方法来实现的,该方法同样也只有一个参数,表示的是以秒为单元的时戳单元。例如,当使用RTP会话传输8000Hz 采样的音频数据时,由于时戳每秒钟将递增8000,所以时戳单元相应地应该被设置成1/8000:

sess.SetTimestampUnit(1.0/8000.0);

3.3 数据发送

        当RTP 会话成功建立起来之后,接下去就可以开始进行流媒体数据的实时传输了。首先需要设置好数据发送的目标地址, RTP协议允许同一会话存在多个目标地址,这可以通过调用RTPSession类的AddDestination()、 DeleteDestination()和ClearDestinations()方法来完成。例如,下面的语句表示的是让RTP会话将数据发送到本地主机的6000端口(注意:如果是需要发到另一个NAT设备后面终端,则需要通过NAT穿透,见后):

unsigned long addr = ntohl(inet_addr("127.0.0.1"));
sess.AddDestination(addr, 6000);

        目标地址全部指定之后,接着就可以调用RTPSession类的SendPacket()方法,向所有的目标地址发送流媒体数据。SendPacket()是RTPSession类提供的一个重载函数,它具有下列多种形式:

int SendPacket(void *data,int len)
int SendPacket(void *data,int len,unsigned char pt,bool mark,unsigned long timestampinc)
int SendPacket(void *data,int len,unsigned short hdrextID,void *hdrextdata,int numhdrextwords)
int SendPacket(void *data,int len,unsigned char pt,bool mark,unsigned long timestampinc,
			   unsigned short hdrextID,void *hdrextdata,int numhdrextwords)

        SendPacket()最典型的用法是类似于下面的语句,其中第一个参数是要被发送的数据,而第二个参数则指明将要发送数据的长度,再往后依次是RTP负载类型、标识和时戳增量。

sess.SendPacket(buffer, 5, 0, false, 10);

        对于同一个RTP会话来讲,负载类型、标识和时戳增量通常来讲都是相同的,JRTPLIB允许将它们设置为会话的默认参数,这是通过调用 RTPSession类的SetDefaultPayloadType()、SetDefaultMark()和 SetDefaultTimeStampIncrement()方法来完成的。为RTP会话设置这些默认参数的好处是可以简化数据的发送,例如,如果为
RTP会话设置了默认参数:

sess.SetDefaultPayloadType(0);
sess.SetDefaultMark(false);
sess.SetDefaultTimeStampIncrement(10);

        之后在进行数据发送时只需指明要发送的数据及其长度就可以了:

sess.SendPacket(buffer, 5);

3.4 数据接收

        对于流媒体数据的接收端,首先需要调用RTPSession类的PollData()方法来接收发送过来的RTP或者 RTCP数据报。由于同一个RTP会话中允许有多个参与者(源),你既可以通过调用RTPSession类的GotoFirstSource()和 GotoNextSource()方法来遍历所有的源,也可以通过调用RTPSession类的GotoFirstSourceWithData()和
GotoNextSourceWithData()方法来遍历那些携带有数据的源。在从RTP会话中检测出有效的数据源之后,接下去就可以调用 RTPSession类的GetNextPacket()方法从中抽取RTP数据报,当接收到的RTP数据报处理完之后,一定要记得及时释放。下面的代码示范了该如何对接收到的RTP数据报进行处理:

if (sess.GotoFirstSourceWithData()) {
	do {
		RTPPacket *pack;     
		pack = sess.GetNextPacket();     
		// 处理接收到的数据
		delete pack;
	} while (sess.GotoNextSourceWithData());
}

        JRTPLIB为RTP数据报定义了三种接收模式,其中每种接收模式都具体规定了哪些到达的RTP数据报将会被接受,而哪些到达的RTP数据报将会被拒绝。通过调用RTPSession类的SetReceiveMode()方法可以设置下列这些接收模式:

         RECEIVEMODE_ALL  缺省的接收模式,所有到达的RTP数据报都将被接受; 
         RECEIVEMODE_IGNORESOME   除了某些特定的发送者之外,所有到达的RTP数据报都将被接受,而被拒绝的发送者列表可以通过调用         
     
AddToIgnoreList()、 DeleteFromIgnoreList()和ClearIgnoreList()方法来进行设置; 
        RECEIVEMODE_ACCEPTSOME   除了某些特定的发送者之外,所有到达的RTP数据报都将被拒绝,而被接受的发送者列表可以通过调用          
   
AddToAcceptList ()、DeleteFromAcceptList和ClearAcceptList ()方法来进行设置。 


3.5 控制信息

        JRTPLIB 是一个高度封装后的RTP库,程序员在使用它时很多时候并不用关心RTCP数据报是如何被发送和接收的,因为这些都可以由JRTPLIB自己来完成。只要 PollData()或者SendPacket()方法被成功调用,JRTPLIB就能够自动对到达的 RTCP数据报进行处理,并且还会在需要的时候发送RTCP数据报,从而能够确保整个RTP会话过程的正确性。

        

抱歉!评论已关闭.