现在的位置: 首页 > 综合 > 正文

SNTP 协议翻译介绍

2014年01月28日 ⁄ 综合 ⁄ 共 12466字 ⁄ 字号 评论关闭

SNTP是简单网络时间协议(Simple Network Time protocol)的简称,它是目前Internet网上实现时间同步的一种重要工程化方法。本文对SNTP协议的工作原理、工作模式、时间戳格式、信息帧格式进行了研究,最后对SNTP协议的应用提出一些有益的建议。

 

关键词:SNTP;时间同步;时间戳格式;报文格式

中图法分类号:TP393.04   文献标识码A

 

Title  Analysis for SNTP protocol

LIN Xiaofan , LI Chao , CHEN Gaoyun

Department of  software engineering, Chengdu university of information technology, chengdu 610225

Abstract:

SNTP is abbreviation for simple network time protocol. At present it is an important engineering method for time synchronization in Internet. This paper describe principle,mode,timestamp format,message format of  SNTP, finally we give some advice for application.

Key words: SNTP; time synchronization ; ,timestamp format ; message format

0引言

在一些需要精确时间同步的场合,如电力通讯、通信计费、分布式网络计算、气象预报等,仅靠计算机本身提供的时钟信号是远远不够的。据统计,计算机时间与国际标准时间偏差在1分钟以上的占到90%以上,这是因为计算机的时钟信号来源于自带的简单晶体振荡器,而这种晶体振荡器守时性很差,调整好时间后,一般每天都有都有几秒钟的时间漂移。上面提及的应用对时间准确度的要求均是需要秒级的,NTP协议就是提供精确网络时间服务的一种重要方法。NTP协议是网络时间协议的简称(Network Time Protocol),目前它被广泛用于在Internet上进行计算机时钟同步,它通过提供完全的机制来访问国际标准时间,在大多数情况下,NTP根据同步源和网络路径的不同,能够提供1-50MS的时间精确度。

NTP协议为了保证高度的精确性,需要很复杂算法,但是在实际很多应用中,秒级的精确度就足够了,在这种情况下,SNTP协议出现了,它通过简化原来的访问协议,在保证时间精确度的前提下,使得对网络时间的开发和应用变得容易。SNTP主要对NTP协议涉及有关访问安全、服务器自动迁移部分进行了缩减。

SNTP协议目前的版本号是SNTP V4,它能与以前的版本兼容,更重要的是SNTP能够与NTP协议具有互操作性,即SNTP客户可以与NTP服务器协同工作,同样NTP客户也可以接收SNTP服务器发出的授时信息。这是因为NTPSNTP的数据包格式是一样的,计算客户时间、时间偏差以及包往返时延的算法也是一样的。因此NTPSNTP实际上是无法分割的。


 

本文主要对SNTP协议进行分析,主要涉及协议工作原理、工作模式、时间戳格式、报文格式,最后对SNTP协议的应用提出一些建议。

1 SNTP协议工作原理

SNTP协议采用客户/服务器工作方式,服务器通过接收GPS信号或自带的原子钟作为系统的时间基准,客户机通过定期访问服务器提供的时间服务获得准确的时间信息,并调整自己的系统时钟,达到网络时间同步的目的。客户和服务器通讯采用UDP协议,端口为123。授时原理可以用下面的图作一个描述:

 

1:授时原理图

T1:客户方发送查询请求时间(以客户方时间系统为参照),标记为Originate Timestamp 

T2:服务器收到查询请求时间(以服务器时间系统为参照),标记为Receive Timestamp

T3:服务器回复时间信息包时间(以服务器时间系统为参照),标记为Transmit Timestamp

T4:客户方收到时间信息包时间(以客户方时间系统为参照),标记为Destination Timestamp

D1:请求信息在网上传播所消耗的时间

D2:回复信息在网上传播所消耗的时间  

现已知T1 、T2、T3、T4,希望求得 以调整客户方时钟有:

                    (1)


 

假设请求和回复在网上传播的时间相同,即D1=D2,则可解得:

  (2)

可以看到, 、D只与T2T1差值、T3T4差值相关,而与T2T3差值无关,即最终的结果与服务器处理请求所需的时间无关。据此,客户方A即可通过T1、T2、T3、T4计算出时差θ去调整本地时钟。

2 SNTP协议工作模式

SNTP协议可以使用单播、广播或多播模式进行工作。单播模式是指一个客户发送请求到预先指定的一个服务器地址,然后从服务器获得准确的时间、来回时延和与服务器时间的偏差。广播模式是指一个广播服务器周期地向指定广播地址发送时间信息,在这组地址内的服务器侦听广播并且不发送请求。多播模式是对广播模式的一种扩展,它设计的目的是对地址未知的一组服务器进行协调。在这种模式下,多播客户发送一个普通的NTP请求给指定的广播地址,多个多播服务器在此地址上进行侦听。一旦收到一个请求信息,一个多播服务器就对客户返回一个普通的NTP服务器应答,然后客户依此对广播地址内剩下的所有服务器作同样的操作,最后利用NTP迁移算法筛选出最好的三台服务器使用。

客户和服务器地址可以采用通常的IPV4IPV6IANA保留IPV4地址224.0.1.1,保留IPV6以:101结束的地址作为NTP广播或多播的地址。用户也可以根据具体情况,建立自己的地址空间,只要不与已经使用的地址空间冲突。

为了局限广播或多播服务占用太多的网络资源,调节多播信息IP头中的TTL值到一个合理的水平非常重要。只有在地址范围内的多播客户能接收到多播信息,只有在地址范围内的服务器组能够对客户的响应进行应答。在Internet上,SNTP广播或多播客户极易受到来自其它SNTP服务器的攻击,因此在Internet上使用该服务时,一定要采用访问控制和加密的措施。

3 SNTP数据格式

SNTP协议同其它的网络应用层协议一样,都具有一定的数据格式,它主要涉及时间的表示,即时间戳的格式,数据如何组帧在网络上传输,即信息帧格式。


 

3.1 SNTP时间戳格式

SNTP时间戳是该协议的重要产品,用来对时间进行精确表示。它由一个64位无符号浮点数组成,整数部分为头32位,小数部分为后32位;单位为秒,时间相对于19001月零点。它能表示的最大数字为4294967295秒,同时具有232PS的精确性,这能满足最苛刻的时间要求。值得注意的是在1968年的某一个时间(2147483648秒)时间戳的最高位已被设置为1,在2036年的某一个时间(4294967295秒)64位字段将会溢出,所有位将会被置为零,此时的时间戳将会被视为无效。为了解决这一问题,尽量延长SNTP时间戳的使用时间,一种可能的办法为:如果最高位设置为1UTC时间范围为1968-2036之间,时间计算起点从19001000秒开始计算;如果最高位设置为0UTC时间范围为2036-2104之间,时间计算起点从20362762816秒开始计算;

 

3.2 SNTP信息帧格式

SNTP协议是UDP协议的客户,它利用UDP123端口提供服务,SNTP客户在设置请求信息时要把UDP目的端口设置为该值,源端口可以为任何非零值,服务器在响应信息中对这些值进行交换。同其它应用层协议一样,SNTP协议的数据通信也是按数据帧的格式进行,下图是对SNTP信息帧格式的描述:

 

 

2SNTP信息帧格式


 

LI:当前时间闰秒标志。字段长度为2位整数,只在服务器端有效。取值定义为:

LI=0:无警告;

LI=1:最后一分钟是61秒;

LI=2:最后一分钟是59秒;

LI=3:警告(时钟没有同步)

服务器在开始时,LI设置为3,一旦与主钟取得同步后就设置成其它值。

 

VN:版本号。字段长度为3位整数,当前版本号为4

Mode:指示协议模式。字段长度为3位,取值定义为:

Mode=0:保留

Mode=1:对称主动;

Mode=2:对称被动;

Mode=3:客户;

Mode=4:服务器;

Mode=5:广播;

Mode=6:保留为NTP控制信息;

Mode=7:保留为用户定义;

在单播和多播模式,客户在请求时把这个字段设置为3,服务器在响应时把这个字段设置为4。在广播模式下,服务器把这个字段设置为5

 

Stratum:指示服务器工作的级别,该字段只在服务器端有效,字段长度为8位整数。取值定义为:

Stratum=0:故障信息;

Stratum=1:一级服务器;

Stratum=2-15:二级服务器;

Stratum=16-255:保留;

 

Poll Interval:指示数据包的最大时间间隔,以秒为单位,作为2的指数方的指数部分,该字段只在服务器端有效。字段长度为8位整数,取值范围从4-17,即16秒到131,072秒。

 

Precision:指示系统时钟的精确性,以秒为单位,作为2的指数方的指数部分,该字段只在服务器端有效。字段长度为8位符号整数,取值范围从-6-20

 

Root Delay:指示与主时钟参考源的总共往返延迟,以秒为单位,该字段只在服务器端有效。字段长度为32位浮点数,小数部分在16位以后,取值范围从负几毫秒到正几百毫秒。

 

Root Dispersion:指示与主时钟参考源的误差,以秒为单位,该字段只在服务器端有效。字段长度为32位浮点数,小数部分在16位以后,取值范围从零毫秒到正几百毫秒。

 

Reference Identifier:指示时钟参考源的标记,该字段只在服务器端有效。对于一级服务器,字段长度为4字节ASCII字符串,左对齐不足添零。对于二级服务器,在IPV4环境下,取值为一级服务器的IP地址,在IPV6环境下,是一级服务器的NSAP地址。


 

Reference Timestamp:指示系统时钟最后一次校准的时间,该字段只在服务器端有效,以前面所述64位时间戳格式表示。

 

Originate Timestamp:指示客户向服务器发起请求的时间,以前面所述64位时间戳格式表示。

 

Transmit Timestamp:指示服务器向客户发时间戳的时间,以前面所述64位时间戳格式表示。

Authenticator(可选):当需要进行SNTP认证时,该字段包含密钥和信息加密码。

 

4 SNTP服务器的基本工作过程

下面以最常用的SNTP工作模式-单播模式,来说明SNTP服务器的工作过程:

 

SNTP服务器在初始化时,Stratum字段设置为0,LI字段设置为3,Mode 字段设置为3,Reference Identifier字段设置为ASCII字符“INIT”,所有时间戳信息设置为0;

一旦SNTP服务器与外部时钟源取得同步后,进入工作状态,Stratum字段设置为1,LI字段设置为0,Reference Identifier字段设置为外部时钟源的ASCII字符,如“GPS”,Precision字段设置为-6到-20之间的一个数值,通常设置为-16。VN字段设置为客户端请求信息包的VN字段值,Root Delay和Root Dispersion字段通常设置为0,Reference Timestamp字段设置为从外部时钟源最新取得的时间,Originate Timestamp字段设置为客户请求包的Transmit Timestamp字段值,Transmit Timestamp字段设置为服务器发出时间戳给客户的时间。

SNTP服务器在工作过程中,如果与外部时钟源失去同步,Stratum字段设置为0,Reference Identifier字段设置为故障原因的ASCII字符,如:“LOST”,此时客户收到这个信息时,要丢弃服务器发给它的时间戳信息。

 

5 SNTP应用的建议

为了使SNTP更好地在网络中进行应用,尤其是在设计和管理有大量计算机需要授时的情况下,有以下建议:

 

1.          尽量在本地局域网内部部署SNTP服务器,而不要采用Internet网上的公用SNTP服务器,因为Internet网络的时延不确定性,服务质量得得不到保证,会对授时的精度产生很大影响;

2.          客户端对服务器的授时请求周期要大于1分钟,以免造成SNTP服务器资源迅速消耗,而不能及时响应客户的请求;

3.          当网络中客户机数目大于500台时,应该配置多台SNTP服务器,以达到要求的授时精度。SNTP最多每秒种能同时响应500个请求,一旦超过这一数目,授时的精确度就得不到保证;


 

4.          在需要高可靠授时的应用,最好配备多台SNTP服务器,利用DNS系统实现负载均衡和集群;

5.          客户端应该能够识别服务器端的故障,一旦发现Stratum字段为0,应该立刻丢弃服务器发来的时间戳,转向其它服务器取时间,以避免授时错误;

结论

SNTP协议是目前网络上提供精确时间服务的一种有效手段,但是很少有人对它进行详细的分析,我们所作的工作对于开发者和网络管理人员来说都是非常有益的,对于开发者来说,能够根据协议开发自己的SNTP服务器,同时对SNTP协议的不足之处进行改进;对于网络管理者来说,在理解SNTP工作原理和方式的基础上,通过网络的优化,使SNTP服务发挥最佳的效能。

 

 

致谢:

在此,我们要感谢西南电信技术研究所的丘明高工提供的帮助,让我们顺利完成该项目的研究。

 

 

参考文献:

[1]  Postel, J. Time protocol[R]. DARPA Working Group Report RFC-868, USC Information Sciences Institute, May 1983.

[2]Mills, D.L. NTP Clock Discipline Principles[R]. DARPA Working Group Report RFC-1305, USC Information Sciences Institute, March 1992.

[3] 谢希仁,计算机网络(第四版)[M].北京:电子工业出版社,2003.

 

作者简介

林晓帆(1968年-)、男、四川成都、讲师、硕士、主要研究方向:计算机网络、软件工程;李超(1964年-)男、四川成都、教授、硕士生导师、主要研究方向:计算机网络、软件工程;陈高云(1963年-)、女、、副教授、硕士生导师、主要研究方向:计算机网络、软件工程;

发表评论评论 (3 个评论)

  • vfdff 2008-12-16 19:56

    简单网络协议 SNTP

    组织:中国互动出版网(http://www.china-pub.com/)
    RFC文档中文翻译计划(http://www.china-pub.com/compters/emook/aboutemook.htm)
    E-mail:ouyang@china-pub.com
    译者:陈华鹏(shenmusic hpchen@eastcom.com)
    译文发布时间:2001-7-14
    版权:本中文翻译文档版权归中国互动出版网所有。可以用于非商业用途自由转载,但必须保留本文档的翻译及版权信息。

    Network Working Group 
    Request for Comments: 1769
    Obsoletes: 1361 
    Category: Informational

    D. Mills
    University of Delaware
    March 1995

    本备忘录的状态

    本备忘录为Internet community提供了信息,但不规定任何一种类型的 Internet 标准。 本备忘录的分发没有限制。

    摘要

    本备忘录描述简单网络时间协议(SNTP),这是网络时间协议(NTP) 的一个改写本,NTP协议适用于同步因特网上的计算机时钟。当不须要实现RFC 1305 所描述的NTP完全功能的情况下,可以使用SNTP。它能用单播方式(点对点)和广播方式(点对多点)操作。它也能在IP 多播方式下操作(可提供这种服务的地方)。SNTP与当前及以前的NTP版本并没有大的不同。但它是更简单,是一个无状态的远程过程调用(RPC),其准确和可靠性相似于UDP/TIME 协议在RFC868描述中所预期的。

    本备忘录淘汰相同的标题的RFC 1361。它的目的是解释用广播方式操作的协议模式,提供某些地方的进一步说明并且改正一些印刷上的错误。在NTP版本3 RFC 1305中说明的工作机理对SNTP的实现不是完全需要的。本备忘录的分发没有限制。

    1. 介绍

    RFC 1305 [MIL92] 指定网络时间协议(NTP)来同步因特网上的计算机时钟。它提供了全面访问国家时间和频率传播服务的机制,组织时间同步子网并且为参加子网每一个地方时钟调整时间。 在今天的因特网的大多数地方, NTP 提供了1-50 ms 的精确度,精确度的大小取决于同步源和网络路径等特性。

    RFC 1305 指定了NTP协议机制中的事件,状态,传输功能和操作,另外,还有可选择的算法,它改进测时质量并且减少了一些同步源中可能存在的错误。为了获得因特网上主要路径的延时精确到毫秒级,使用一些复杂的算法或者他们的等价算法是必要的。但是,在许多场合这样的精确度是不要求,或许精确到秒已足够了。在这样的情况下,更简单的协议例如“时间协议”[POS83 ]已被使用。这些协议通过基于RPC交换:客户端请求此刻时间,然后服务器回传从某个已知时间点到现在的秒钟数。

    NTP被设计成了性能差异很大的客户端及服务器均能适用,且适用于客户端及服务器所在网路有大范围的网络延迟和抖动的情况。今天的因特网上的NTP同步子网的大多数用户使用一个软件包包括了一整套的NTP 的选择和算法,是一个比较复杂,实时的应用系统。软件要适用于多种硬件平台:从巨型计算机到个人计算机。要在这样的范围都适用,它的庞大尺寸和复杂性就不适合于很多应用了。按照要求,探求一些可供选择的访问策略( 使用适合于精确度要求不是很严格的简单软件)是有用的。

    本备忘录描述简单网络时间协议(SNTP),它是一个简化了的NTP服务器和NTP客户端策略。SNTP在协议实现上没有什么更改,在最近也不会有什么变动。 访问范例与UDP/TIME 协议是一致的,实际上,SNTP应该更容易适用于使用个人计算机的 UDP/TIME 客户。而且,SNTP 也被设计在一个专门的服务器( 包括一台集成的无线电时钟)里操作。由于在系统里的那些各种各样反应机制的设计和控制,交付调节时间精确到微秒是可能的。这样的专门设计是切实可行的。 强烈建议SNTP 仅仅在同步子网的末端被使用。 SNTP 客户端应该仅在子网的叶子( 最高的阶层) 操作并在配置过程中没有依靠其它NTP或者SNTP客户端来同步。SNTP 服务器应该仅在子网的根( 阶层1) 操作并在配置过程中,除一台可靠的无线电时钟外中没有其它同步源。只有使用了有冗余的同步源及不同的子网路径及整套NTP实现中的crafted 算法,主服务器通常期望的可靠性才有可能达到。这种做法使主同步源在无线电时钟通信失败或者交付了错误时间时,还能用到其它几个无线电时钟和通向其它主要服务器的备份路径。因此,应该仔细考虑客户端中SNTP的使用,而不是在主服务器里的NTP的使用。

    2. 工作模式与地址分配

    象NTP一样,SNTP 能在单播(点向点) 或者广播(点对多点) 模式中操作。单播客户端发送请求到服务器并且期望从那里得到答复,并且(可选的),得到有关服务器的往返传播延迟和本地时钟补偿。广播服务器周期性地送消息给一指定的IP 广播地址或者IP多播地址,并且通常不期望从客户端得到请求,广播客户端监听地址但通常并不给服务器发请求。一些广播服务器可能选择对客户端作出反应请求以及发出未经请求广播消息;同时一些广播客户端可能会送请求仅为了确定在服务器和客户端之间的网络传播延迟。

    在单播方式下,客户端和服务器的IP 地址按常规被分配。在广播方式下,服务器使用一指定的IP播送地址或者IP多播地址,以及指明的媒介访问播送地址,客户端要在这些地址上帧听。为此,IP 广播地址将限制在一个单独的IP子网范围,因为路由器不传播IP广播数据报。就以太网而论,例如,以太网媒介访问广播地址(主机部分全部为1) 被用于表示IP广播地址。另一方面,IP 多播地址将广播的潜在有效范围扩展到整个因特网。其真实范围,组会员和路由由因特网组管理协议(IGMP) 确定 [DEE89 ],对于各种路由协议,超出了这份资料的讨论范围。 就以太网而论,例如,以太网媒介访问播送地址(全部为1)要和分配的224.0.1.1 的IP 多播地址合用。 除了IP 地址规范和IGMP,在服务器操作IP广播地址或者IP多播地址没有什么不同。

    广播客户端帧听广播地址,例如在以太网情况下主机地址全部为1的。就广播地址的IP而论,没有更进一步规定的必要了。在IP多组广播情况下,主机可能需要实现IGMP,为的是让本地路由器把消息拦截后送到224.0.1.1 多播组。这些考虑不属于这份资料的讨论范围。 就当前指定的SNTP而论,其真正的弱点是多目广播客户端可能被一些行为不当或者敌对的在因特网别处的SNTP/NTP 多播服务器攻击而瘫痪,因为目前全部这样服务器使用相同的IP 多播地址:224.0.1.1 组地址。 所以有必要,存取控制要基于那些以客户端信任的服务器源地址,即客户端选择仅仅为自己所知的服务器。或者,按照惯列和非正式协议,全部NTP多播服务器现在在每条消息内应包括已用MD5加密的加密位,以便客户端确定消息没有在传输中被修改。SNTP 客户端能实现那些必要加密和密钥分发计划在原则上是可能的,但是这在SNTP被设计成的那些简单的系统里不可能被考虑。

    考虑到没有一个完整的SNTP规范,故IP 广播地址将使用在IP子网和局域网部分(指有完整功能的NTP服务器和SNTP客户端在同一子网上的局域网),而对于IP 多播地址来说,将只能用在为达到以上相同目而设计的特例中。尤其,只有服务器实现了RFC 1305 描述的NTP认证时(包括支持MD5消息位的算法),在SNTP 服务器里的IP 多播地址才被使用。

    3. NTP时间戳格式

    sntp使用在RFC 1305 及其以前的版本所描述标准NTP时间戳的格式。与因特网标准标准一致, NTP 数据被指定为整数或定点小数,位以big-endian风格从左边0位或者高位计数。除非不这样指定,全部数量都将设成unsigned的类型,并且可能用一个在bit0前的隐含0填充全部字段宽度。

    因为SNTP时间戳是重要的数据和用来描述协议主要产品的,一个专门的时间戳格式已经建立。 NTP用时间戳表示为一64 bits unsigned 定点数,以秒的形式从1900 年1月1 日的0:0:0算起。整数部分在前32位里,后32bits(seconds Fraction)用以表示秒以下的部分。在Seconds Fraction 部分,无意义的低位应该设置为0。这种格式把方便的多精度算法和变换用于UDP/TIME 的表示(单位:秒),但使得转化为ICMP的时间戳消息表示法(单位:毫秒)的过程变得复杂了。它代表的精度是大约是200 picoseconds,这应该足以满足最高的要求了。

    注意,从1968 年起,最高有效位(整数部分的0 bit位) 已经被确定,64 位比特字段在2036 年将溢出。 如果NTP或者SNTP在2036 年还在使用的话,一些外部方法将有必要用来调整与1900年及2036 年有关的时间 (136 年的其它倍数也一样)。 用这样的限制使时间戳数据变得很讲究(要求合适的方法可容易地被找到)。从今以后每136 年,就会有200picosecond 的间隔,会被忽略掉,64 个比特字段将全部置为0 ,按照惯列它将被解释为一个无效的或者不可获得的时间戳。

    4. NTP 报文格式

    NTP 和SNTP 是用户数据报协议( UDP) 的客户端 [POS80 ],而UDP自己是网际协议( IP) [DAR81 ] 的客户端. IP 和UDP 报头的结构在被引用的指定资料里描述,这里就不更进一步描述了。UDP的端口是123,UDP头中的源断口和目的断口都是一样的,保留的UDP头如规范中所述。以下是SNTP 报文格式的描述,它紧跟在IP 和UDP 报头之后。SNTP的消息格式与RFC-1305中所描述的NTP格式是一致的,不同的地方是:

    一些SNTP的数据域已被风装,也就是说已初始化为一些预定的值。NTP 消息的格式被显示如下。

    如下一部分描述,在SNTP 里大多数这些字段被预规定的数据给赋初值。为完整起见,每个字段的功能在下面被简要总结。

    1. 闰秒标识器:这是一个二位码,预报当天最近的分钟里要被插入或删除的闰秒秒数。用1/0表示,分别说明如下:

    LI Value 含 义 
    00 0 无预告 
    01 1 最近一分钟有61秒 
    10 2 最近一分钟有59秒 
    11 3 警告状态(时钟未同步) 

    2. 版本号:这是一个三bits的整数,表示NTP的版本号,现在为3。

    3. 模式:这是一个三bits的整数,表示模式,定义如下:

    mode 含 义 
    0 保留 
    1 对称性激活 
    2 被动的对称性 
    3 客户端几 
    4 服务器 
    5 广播 
    6 为NTP控制性系保留 
    7 为自用保留 

    在点对点模式下,客户端机在请求中设置此字段为3,服务器在回答时设置此字段为4;在广播模式下,服务器在回答时设置此字段为5。

    4. stratum(层):这是一个8bits的整数(无符号),表示本地时钟的层次水平,数值定义如下:

    stratum 含 义 
    0 未指定或难以获得 
    1 主要参考(如无线电时钟钟) 
    2-15 第二参考(通过NTP/SNTP) 
    16-255 保留 

    5.测试间隔:八位signed integer,表示连续信息之间的最大间隔,精确到秒的平方及。本字段的值从4(16s)到14(16284s);然而,大多数应用使用6(64s)到10(1024s)。

    6.精度:八位signed integer,表示本地时钟精度,精确到秒的平方级。值从-6(主平)到-20(微妙级时钟)。

    7. 根时延:32位带符号定点小数,表示在主参考源之间往返的总共时延,以小数位后15~16bits。数值根据相关的时间与频率可正可负,从负的几毫秒到正的几百毫秒。

    8. 根离散:32位带符号定点小数,表示在主参考源有关的名义错误,以小数位后15~16bits。范围:0~几百毫秒。

    9. 参考时钟标识符:32bits,用来标识特殊的参考源。在stratum 0(未指定)或stratum 1(基本参考)的情况下,该字段以四个八位字节,左对齐,零填充的string表示。当没有NTP枚举时,使用下列ASCII标识符:

    阶层 代码 意思 
    1 pps 精度校准源,例如ATOM(原子钟),PPS代表(每秒脉冲精度源),等等 
    1 service 除了一般的NTP报时服务外,例如ACTS (计算机自动化报时服务),TIME(UDP/Time协议),TSP(Unix 报时服务协议),DTSS. (数字化时间同步服务),等等 
    1 radio 一般的收音机服务,带有callsigns, 例如CHU, DCF77, MSF, TDF, WWV, WWVB, WWVH,等等 
    1 nav 无线电导航系统,例如OMEG(欧米加导航系统), LORC(远距离无线电导航系统),等等  
    1 satellite 一般的卫星业务,例如GOES(地球同步轨道环境卫星),GPS(全球卫星定位服务),等等  
    2 address 二级参考(4个八位二进制字节表示的NTP服务器因特网地址) 

    10. 参考时间戳:64bits时间戳,本地时钟被修改的最新时间。

    11. 原始时间戳:客户端发送的时间,64bits。

    12. 接受时间戳:服务端接受到的时间,64bits。

    13. 传送时间戳:服务端送出应答的时间,64bits。

    14. 认证符(可选项):当NTP的认证机制已运行后,这个字段包含认证者的信息(参见RFC1305 中的附件C)。在SNTP中本字段一般被来报输入消息所忽略,也不用在输出消息中。

    5. SNTP 客户端操作

    SNTP客户端与NTP/SNTP 服务器通信的模式是一个非持久状态的远程过程调用。在单播方式,客户端发给服务器(方式3) 请求并且期望服务器答复 (方式4)。 在广播方式,客户端送并不请求只是等待一台或更多的服务器的广播消息(方式5) ,这取决于设置。 根据客户端和服务器设置,单播客户端和广播服务器通常在从64 给1024 s 的间隔里发送消息。

    单播客户端初始化SNTP 报文首部,再把消息发送到服务器,然后从服务器回复的报文中剥去时间包。为此,上面提到的所有报文首部字段,除第一个八位字节外都设置成0。 在这个八位字节里Li 字段设置为0( 没有警告) 和方式字段设置为3(客户端)。VN 字段必须同NTP 或者SNTP 服务器的软件版本一致;但是,NTP 版本3( RFC 1305)的服务器也将接受第2( RFC 1119) 版本的消息以及版本1( RFC 1059)的消息,而NTP 版本2服务器也将接受NTP 为版本1的消息。版本0 ( RFC 959) 消息不再被支持。因为今天因特网已有了NTP 服务器操作的3个版本,推荐VN 字段设置1。

    在单播及广播方式下,单播服务器回答及广播以上所述的所有字段;但是,在SNTP下,各字段中,只有传送时间戳在非零情况下才有明确的意思.这个字段的整数部分包含服务器此刻的时间,其格式与UDP/TIME 协议相同[POS83].这个字段的fraction部分通常是有效的, SNTP的精确度证明可以精确到秒。如果传送用时间戳字段是全0,则该消息将被忽略。

    在广播方式下,客户端没有附加信息用以计算在服务器和客户端之间的传播延迟,因为在此方式下,传送用时间戳和接收时间戳字段是没有意义的。即使在单播方式,大多数客户端也会选择忽略原始时间戳和接收时间戳字段。但是,在单播方式下,一种简单的计算可以用来计算与服务器有关的往返传播延迟d及本地时钟补偿t,通常对在数十毫秒内。为此,客户端在请求包中将本地时钟时间按NTP的格式写入源时间戳。当收到答复时,客户端将目的时间戳作为到达时间,并根据它的本地时钟,将其转变成NTP格式。下述表格总结4个时间戳。

    用时间戳名字 ID  产生 
    原始时间戳 T1 时间请求由客户端送 
    收到时间戳 T2 时间请求在服务器收到 
    传送时间戳 T3 时间答复通过服务器送 
    目的地时间戳 T4 时间答复在客户端收到 

    往返传播延迟d和本地时钟补偿t定义为:

    D =( T4 - T1) - ( T2 - T3)

    T =(( T2 - T1) +( T3 - T4)) /2

抱歉!评论已关闭.