现在的位置: 首页 > 综合 > 正文

Win32串口API

2013年02月03日 ⁄ 综合 ⁄ 共 8508字 ⁄ 字号 评论关闭

       在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。 

 一般情况下,工控机和各智能仪表通过RS485总线进行通信。RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。 



     
在Win32下,可以使用两种编程方式实现串口通信

      其一   使用ActiveX控件,这种方法程序简单,但欠灵活。

      其二   调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活。


      本文我们只介绍Win32 API串口通信部分。 
      串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式)。

     
同步操作时
,API函数会阻塞直到操作完成以后才能返回(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);

      而重叠(异步)操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞。

无论那种操作方式,一般都通过四个步骤来完成:

  1. 打开串口
  2. 配置串口
  3. 读写串口
  4. 关闭串口

(1) 打开串口

       Win32系统把文件的概念进行了扩展。无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的。该函数的原型为:

HANDLE CreateFile( LPCTSTR lpFileName,
                  DWORD dwDesiredAccess,
                  DWORD dwShareMode,
                  LPSECURITY_ATTRIBUTES lpSecurityAttributes,
                  DWORD dwCreationDistribution,
                  DWORD dwFlagsAndAttributes,
                  HANDLE hTemplateFile);


  • lpFileName:将要打开的串口逻辑名,如“COM1”
  • dwDesiredAccess:指定串口访问的类型,可以是读取、写入或二者并列;
  • dwShareMode:指定共享属性,由于串口不能共享,该参数必须置为0;
  • lpSecurityAttributes:引用安全性属性结构,缺省值为NULL;
  • dwCreationDistribution:创建标志,对串口操作该参数必须置为OPEN_EXISTING;
  • dwFlagsAndAttributes:属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O;该值为0,表示同步I/O操作;
  • hTemplateFile:对串口而言该参数必须置为NULL;

同步I/O方式打开串口的示例代码:

HANDLE hCom;  //全局变量,串口句柄
hCom = CreateFile("COM1",//COM1口
                   GENERIC_READ|GENERIC_WRITE, //允许读和写
		   0, //独占方式
		   NULL,
		   OPEN_EXISTING, //打开而不是创建
		   0, //同步方式
		   NULL);
if(hCom == (HANDLE)-1)
{
	AfxMessageBox("打开COM失败!");
	return FALSE;
}
return TRUE;


重叠(异步)I/O打开串口的示例代码:

HANDLE hCom;  //全局变量,串口句柄
hCom = CreateFile("COM1",  //COM1口
                   GENERIC_READ|GENERIC_WRITE, //允许读和写
                   0,  //独占方式
                   NULL,
                   OPEN_EXISTING,  //打开而不是创建
                   FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
                   NULL);
if(hCom == INVALID_HANDLE_VALUE)
{
	AfxMessageBox("打开COM失败!");
	return FALSE;
}
return TRUE;


(2) 配置串口

      在打开通讯设备句柄后,常常需要对串口进行一些初始化配置工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、数据位数、奇偶校验和停止位数等信息。在查询或配置串口的属性时,都要用DCB结构来作为缓冲区。 

      一般用CreateFile打开串口后,可以调用GetCommState函数来获取串口的初始配置。要修改串口的配置,应该先修改DCB结构,然后再调用SetCommState函数设置串口。 

DCB结构包含了串口的各项参数设置,下面仅介绍几个该结构常用的变量:

typedef struct _DCB {
   //………
   //波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一:
   DWORD BaudRate; 
   //CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400, 
   //CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400
   DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查 
   //…
   BYTE ByteSize; // 通信字节位数,4—8
   BYTE Parity; //指定奇偶校验方法。此成员可以有下列值:
   //EVENPARITY 偶校验     NOPARITY 无校验
   //MARKPARITY 标记校验   ODDPARITY 奇校验
   BYTE StopBits; //指定停止位的位数。此成员可以有下列值:
   //ONESTOPBIT 1位停止位   TWOSTOPBITS 2位停止位
   //ONE5STOPBITS   1.5位停止位
   //………
 } DCB;


winbase.h文件中定义了以上用到的常量。如下:

#define NOPARITY            0
#define ODDPARITY           1
#define EVENPARITY          2
#define ONESTOPBIT          0
#define ONE5STOPBITS        1
#define TWOSTOPBITS         2
#define CBR_110             110
#define CBR_300             300
#define CBR_600             600
#define CBR_1200            1200
#define CBR_2400            2400
#define CBR_4800            4800
#define CBR_9600            9600
#define CBR_14400           14400
#define CBR_19200           19200
#define CBR_38400           38400
#define CBR_56000           56000
#define CBR_57600           57600
#define CBR_115200          115200
#define CBR_128000          128000
#define CBR_256000          256000



GetCommState函数可以获得COM口的设备控制块,从而获得相关参数:

BOOL GetCommState(
   HANDLE hFile, //标识通讯端口的句柄
   LPDCB lpDCB //指向一个设备控制块(DCB结构)的指针
);


SetCommState函数设置COM口的设备控制块:

BOOL SetCommState(
   HANDLE hFile, 
   LPDCB lpDCB 
);



       除了在DCB中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。

BOOL SetupComm(
    HANDLE hFile,	// 通信设备的句柄 
    DWORD dwInQueue,	// 输入缓冲区的大小(字节数) 
    DWORD dwOutQueue	// 输出缓冲区的大小(字节数)
 );


     
在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。超时的作用是在指定的时间内没有读入或发送指定数量的字符,ReadFile或WriteFile的操作仍然会结束。 
      要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。 
      读写串口的超时有两种:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延。总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读写操作的超时。 
COMMTIMEOUTS结构的定义为:

typedef struct _COMMTIMEOUTS {   
    DWORD ReadIntervalTimeout;         //读间隔超时
    DWORD ReadTotalTimeoutMultiplier;  //读时间系数
    DWORD ReadTotalTimeoutConstant;    //读时间常量
    DWORD WriteTotalTimeoutMultiplier; // 写时间系数
    DWORD WriteTotalTimeoutConstant;   //写时间常量
} COMMTIMEOUTS,*LPCOMMTIMEOUTS;


COMMTIMEOUTS结构的成员都以毫秒为单位。总超时的计算公式是: 

总超时=时间系数×要求读/写的字符数+时间常量 


例如,要读入10个字符,那么读操作的总超时的计算公式为: 
读总超时=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant 
可以看出:间隔超时和总超时的设置是不相关的,这可以方便通信程序灵活地设置各种超时。 
       如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。 
       在用重叠(异步)方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。 
配置串口的示例代码:

SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024
COMMTIMEOUTS TimeOuts;
GetCommState(hCom, &TimeOuts);
//设定读超时
TimeOuts.ReadIntervalTimeout = 1000;
TimeOuts.ReadTotalTimeoutMultiplier = 500;
TimeOuts.ReadTotalTimeoutConstant = 5000;
//设定写超时
TimeOuts.WriteTotalTimeoutMultiplier = 500;
TimeOuts.WriteTotalTimeoutConstant = 2000;
SetCommTimeouts(hCom, &TimeOuts); //设置超时

DCB dcb;
GetCommState(hCom, &dcb);
dcb.BaudRate = 9600; //波特率为9600
dcb.ByteSize = 8; //每个字节有8位
dcb.Parity = NOPARITY; //无奇偶校验位
dcb.StopBits = TWOSTOPBITS; //两个停止位
SetCommState(hCom, &dcb);

PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);


在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:

BOOL PurgeComm(
    HANDLE hFile,	//串口句柄
    DWORD dwFlags	// 需要完成的操作
);


参数dwFlags指定要完成的操作,可以是下列值的组合:

PURGE_TXABORT	  中断所有写操作并立即返回,即使写操作还没有完成。
PURGE_RXABORT	  中断所有读操作并立即返回,即使读操作还没有完成。
PURGE_TXCLEAR	  清除输出缓冲区
PURGE_RXCLEAR	  清除输入缓冲区

(3) 读写串口

我们使用ReadFile和WriteFile读写串口,下面是两个函数的声明:

BOOL ReadFile(
    HANDLE hFile,	//串口的句柄
    // 读入的数据存储的地址,
    // 即读入的数据将存储在以该指针的值为首地址的一片内存区
    LPVOID lpBuffer,
    DWORD nNumberOfBytesToRead,	// 要读入的数据的字节数
    
    // 指向一个DWORD数值,该数值返回读操作实际读入的字节数
    LPDWORD lpNumberOfBytesRead,	
    
    // 重叠(异步)操作时,该参数指向一个OVERLAPPED结构,同步操作时,该参数为NULL。
    LPOVERLAPPED lpOverlapped 	
);	
BOOL WriteFile(

    HANDLE hFile,	//串口的句柄
    
    // 写入的数据存储的地址,
    // 即以该指针的值为首地址的nNumberOfBytesToWrite
    // 个字节的数据将要写入串口的发送数据缓冲区。
    LPCVOID lpBuffer,	
    
    DWORD nNumberOfBytesToWrite,	//要写入的数据的字节数
    
    // 指向指向一个DWORD数值,该数值返回实际写入的字节数
    LPDWORD lpNumberOfBytesWritten,	
    
    // 重叠(异步)操作时,该参数指向一个OVERLAPPED结构,
    // 同步操作时,该参数为NULL。
    LPOVERLAPPED lpOverlapped 	
);


在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。 

      ReadFile和WriteFile函数是同步还是异步由CreateFile函数决定,如果在调用CreateFile创建句柄时指定了FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的操作就应该是重叠的;如果未指定重叠标志,则读写操作应该是同步的。ReadFile和WriteFile函数的同步或者异步应该和CreateFile函数相一致。 
     ReadFile函数只要在串口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲区,而且要等这些字符从串行口送出去后才算完成操作。 
     如果操作成功,这两个函数都返回TRUE。需要注意的是,当ReadFile和WriteFile返回FALSE时,不一定就是操作失败,线程应该调用GetLastError函数分析返回的结果。例如,在重叠操作时如果操作还未完成函数就返回,那么函数就返回FALSE,而且GetLastError函数返回ERROR_IO_PENDING。这说明重叠操作还未完成。 
同步方式读写串口比较简单,下面先例举同步方式读写串口的代码:

//同步读串口
char str[100];
DWORD wCount;//读取的字节数
BOOL bReadStat;
bReadStat = ReadFile(hCom,str,100,&wCount,NULL);
if(!bReadStat)
{
	AfxMessageBox("读串口失败!");
	return FALSE;
}
return TRUE;
//同步写串口
char lpOutBuffer[100];
DWORD dwBytesWrite=100;
COMSTAT ComStat;
DWORD dwErrorFlags;
BOOL bWriteStat;
ClearCommError(hCom,&dwErrorFlags,&ComStat);
bWriteStat = WriteFile(hCom, lpOutBuffer, dwBytesWrite, &dwBytesWrite, NULL);
if(!bWriteStat)
{
	AfxMessageBox("写串口失败!");
}
PurgeComm(hCom, PURGE_TXABORT|
	PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);




在重叠操作时,操作还未完成函数就返回。 
重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。有两种方法可以等待操作完成:一种方法是用象WaitForSingleObject这样的等待函数来等待OVERLAPPED结构的hEvent成员;另一种方法是调用GetOverlappedResult函数等待,后面将演示说明。 
下面我们先简单说一下OVERLAPPED结构和GetOverlappedResult函数: 
OVERLAPPED结构 
OVERLAPPED结构包含了重叠I/O的一些信息,定义如下:

typedef struct _OVERLAPPED {
    DWORD  Internal; 
    DWORD  InternalHigh; 
    DWORD  Offset; 
    DWORD  OffsetHigh; 
    HANDLE hEvent; 
} OVERLAPPED;


在使用ReadFile和WriteFile重叠操作时,线程需要创建OVERLAPPED结构以供这两个函数使用。线程通过OVERLAPPED结构获得当前的操作状态,该结构最重要的成员是hEvent。hEvent是读写事件。当串口使用异步通讯时,函数返回时操作可能还没有完成,程序可以通过检查该事件得知是否读写完毕。 
       当调用ReadFile, WriteFile 函数的时候,该成员会自动被置为无信号状态;当重叠操作完成后,该成员变量会自动被置为有信号状态。

GetOverlappedResult函数
BOOL GetOverlappedResult(
    HANDLE hFile,	// 串口的句柄  
    
    // 指向重叠操作开始时指定的OVERLAPPED结构
    LPOVERLAPPED lpOverlapped,	
    
    // 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。
    LPDWORD lpNumberOfBytesTransferred,	
    
    // 该参数用于指定函数是否一直等到重叠操作结束。
    // 如果该参数为TRUE,函数直到操作结束才返回。
    // 如果该参数为FALSE,函数直接返回,这时如果操作没有完成,
    // 通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。
    BOOL bWait 	
);

该函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。 
异步读串口的示例代码:

char lpInBuffer[1024];
DWORD dwBytesRead = 1024;
COMSTAT ComStat;
DWORD dwErrorFlags;
OVERLAPPED m_osRead;
memset(&m_osRead,0,sizeof(OVERLAPPED));
m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

ClearCommError(hCom,&dwErrorFlags,&ComStat);
dwBytesRead = min(dwBytesRead,(DWORD)ComStat.cbInQue);
if(!dwBytesRead)
return FALSE;
BOOL bReadStatus;
bReadStatus = ReadFile(hCom, lpInBuffer, dwBytesRead, &dwBytesRead, &m_osRead);

if(!bReadStatus) //如果ReadFile函数返回FALSE
{
if (GetLastError() == ERROR_IO_PENDING)
//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作
{
WaitForSingleObject(m_osRead.hEvent, 2000);
//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
PurgeComm(hCom, PURGE_TXABORT|
PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;
}

抱歉!评论已关闭.