现在的位置: 首页 > 综合 > 正文

从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

2014年01月29日 ⁄ 综合 ⁄ 共 6549字 ⁄ 字号 评论关闭

原文转自http://blog.csdn.net/v_july_v/article/details/8203674#comments

       从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

前言

    前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1、KD树;2、神经网络;3、编程艺术第28章。你看到,blog内的文章与你于别处所见的任何都不同。于是,等啊等,等一台电脑,只好等待..”。得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任),于是今天开始Top
10 Algorithms in Data Mining
系列第三篇文章,即本文「从K近邻算法谈到KD树、SIFT+BBF算法」的创作。

    一个人坚持自己的兴趣是比较难的,因为太多的人太容易为外界所动了,而尤其当你无法从中得到多少实际性的回报时,所幸,我能一直坚持下来。毕达哥拉斯学派有句名言:“万物皆数”,最近读完「微积分概念发展史」后也感受到了这一点。同时,从算法到数据挖掘、机器学习,再到数学,其中每一个领域任何一个细节都值得探索终生,或许,这就是“终生为学”的意思。

    本文各部分内容分布如下:

  1. 第一部分讲K近邻算法,其中重点阐述了相关的距离度量表示法,
  2. 第二部分着重讲K近邻算法的实现--KD树,和KD树的插入,删除,最近邻查找等操作,及KD树的一系列相关改进(包括BBF,M树等);
  3. 第三部分讲KD树的应用:SIFT+kd_BBF搜索算法。

    同时,你将看到,K近邻算法同本系列的前两篇文章所讲的决策树分类贝叶斯分类,及支持向量机SVM一样,也是用于解决分类问题的算法,

  

    而本数据挖掘十大算法系列也会按照分类,聚类,关联分析,预测回归等问题依次展开阐述。

    OK,行文仓促,本文若有任何漏洞,问题或者错误,欢迎朋友们随时不吝指正,各位的批评也是我继续写下去的动力之一。感谢。

第一部分、K近邻算法

1.1、什么是K近邻算法

    何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居。为何要找邻居?打个比方来说,假设你来到一个陌生的村庄,现在你要找到与你有着相似特征的人群融入他们,所谓入伙。

    用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中。根据这个说法,咱们来看下引自维基百科上的一幅图:

    如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在,我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。
    我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他/她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:

  • 如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。
  • 如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。

    于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。

1.2、近邻的距离度量表示法

    上文第一节,我们看到,K近邻算法的核心在于找到实例点的邻居,这个时候,问题就接踵而至了,如何找到邻居,邻居的判定标准是什么,用什么来度量。这一系列问题便是下面要讲的距离度量表示法。但有的读者可能就有疑问了,我是要找邻居,找相似性,怎么又跟距离扯上关系了?

    这是因为特征空间中两个实例点的距离和反应出两个实例点之间的相似性程度。K近邻模型的特征空间一般是n维实数向量空间,使用的距离可以使欧式距离,也是可以是其它距离,既然扯到了距离,下面就来具体阐述下都有哪些距离度量的表示法,权当扩展。

  • 1. 欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为:

(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离

(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:

(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:

  也可以用表示成向量运算的形式:

其上,二维平面上两点欧式距离,代码可以如下编写:

  1. //unixfy:计算欧氏距离   
  2. double euclideanDistance(const vector<double>& v1, const vector<double>& v2)  
  3. {  
  4.      assert(v1.size() == v2.size());  
  5.      double ret = 0.0;  
  6.      for (vector<double>::size_type i = 0; i != v1.size(); ++i)  
  7.      {  
  8.          ret += (v1[i] - v2[i]) * (v1[i] - v2[i]);  
  9.      }  
  10.      return sqrt(ret);  
  11.  }  
//unixfy:计算欧氏距离
double euclideanDistance(const vector<double>& v1, const vector<double>& v2)
{
     assert(v1.size() == v2.size());
     double ret = 0.0;
     for (vector<double>::size_type i = 0; i != v1.size(); ++i)
     {
         ret += (v1[i] - v2[i]) * (v1[i] - v2[i]);
     }
     return sqrt(ret);
 }

  • 2. 曼哈顿距离,我们可以定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和。例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为:,要注意的是,曼哈顿距离依赖座标系统的转度,而非系统在座标轴上的平移或映射。 
     通俗来讲,想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。而实际驾驶距离就是这个“曼哈顿距离”,此即曼哈顿距离名称的来源, 同时,曼哈顿距离也称为城市街区距离(City Block distance)。
(1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离 
(2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼哈顿距离 

                          

  • 3. 切比雪夫距离,若二个向量或二个点p 、and q,其座标分别为,则两者之间的切比雪夫距离定义如下:
    这也等于以下Lp度量的极值:,因此切比雪夫距离也称为L∞度量。
    以数学的观点来看,切比雪夫距离是由一致范数(uniform norm)(或称为上确界范数)所衍生的度量,也是超凸度量(injective metric space)的一种。
    在平面几何中,若二点p及q的直角坐标系坐标为,则切比雪夫距离为:
    玩过国际象棋的朋友或许知道,国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。
(1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离 
(2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的切比雪夫距离   

这个公式的另一种等价形式是 

  • 4. 闵可夫斯基距离(Minkowski Distance),闵氏距离不是一种距离,而是一组距离的定义。
(1) 闵氏距离的定义       
两个n维变量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的闵可夫斯基距离定义为: 
其中p是一个变参数。
当p=1时,就是曼哈顿距离
当p=2时,就是欧氏距离
当p→∞时,就是切比雪夫距离       
根据变参数的不同,闵氏距离可以表示一类的距离。 
  • 5. 标准化欧氏距离 (Standardized Euclidean distance ),标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。至于均值和方差标准化到多少,先复习点统计学知识。

    假设样本集X的数学期望或均值(mean)为m,标准差(standard deviation,方差开根)为s,那么X的“标准化变量”X*表示为:(X-m)/s,而且标准化变量的数学期望为0,方差为1。

    即,样本集的标准化过程(standardization)用公式描述就是:

    标准化后的值 =  ( 标准化前的值  - 分量的均值 ) /分量的标准差  

    经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式:  

    如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。 

  • 6. 马氏距离(Mahalanobis Distance)

    (1)马氏距离定义       

    有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为: 

    协方差矩阵中每个元素是各个矢量元素之间的协方差Cov(X,Y),Cov(X,Y) = E{ [X-E(X)] [Y-E(Y)]},其中E为数学期望

    而其中向量Xi与Xj之间的马氏距离定义为:    

    若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:       

    也就是欧氏距离了。  

    若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。
    (2)马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。 

    微博上的seafood高清版点评道:原来马氏距离是根据协方差矩阵演变,一直被老师误导了,怪不得看Killian在05年NIPS发表的LMNN论文时候老是看到协方差矩阵和半正定,原来是这回事
  • 7、巴氏距离(Bhattacharyya Distance),在统计中,Bhattacharyya距离测量两个离散或连续概率分布的相似性。它与衡量两个统计样品或种群之间的重叠量的Bhattacharyya系数密切相关。Bhattacharyya距离和Bhattacharyya系数以20世纪30年代曾在印度统计研究所工作的一个统计学家A. Bhattacharya命名。同时,Bhattacharyya系数可以被用来确定两个样本被认为相对接近的,它是用来测量中的类分类的可分离性。
(1)巴氏距离的定义
对于离散概率分布 p和q在同一域 X,它被定义为:
其中:
是Bhattacharyya系数。
对于连续概率分布,Bhattacharyya系数被定义为:
这两种情况下,巴氏距离并没有服从三角不等式.(值得一提的是,Hellinger距离不服从三角不等式)。 
对于多变量的高斯分布 
和是手段和协方差的分布
需要注意的是,在这种情况下,第一项中的Bhattacharyya距离与马氏距离有关联。 
(2)Bhattacharyya系数
Bhattacharyya系数是两个统计样本之间的重叠量的近似测量,可以被用于确定被考虑的两个样本的相对接近。
计算Bhattacharyya系数涉及集成的基本形式的两个样本的重叠的时间间隔的值的两个样本被分裂成一个选定的分区数,并且在每个分区中的每个样品的成员的数量,在下面的公式中使用
考虑样品a 和 b ,n是的分区数,并且被一个 和 b i的日分区中的样本数量的成员。更多介绍请参看:http://en.wikipedia.org/wiki/Bhattacharyya_coefficient
  • 8. 汉明距离(Hamming distance), 两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。
或许,你还没明白我再说什么,不急,看下上篇blog中第78题的第3小题整理的一道面试题目,便一目了然了。如下图所示:
  1. //动态规划:     
  2.     
  3. //f[i,j]表示s[0...i]与t[0...j]的最小编辑距离。  
      
  4. f[i,j] = min { f[i-1,j]+1,  f[i,j-1]+1,  f[i-1,j-1]+(s[i]==t[j]?0:1) }    
  5.     
  6. //分别表示:添加1个,删除1个,替换1个(相同就不用替换)。   
//动态规划:  
  
//f[i,j]表示s[0...i]与t[0...j]的最小编辑距离。  
f[i,j] = min { f[i-1,j]+1,  f[i,j-1]+1,  f[i-1,j-1]+(s[i]==t[j]?0:1) }  
  
//分别表示:添加1个,删除1个,替换1个(相同就不用替换)。 
    与此同时,面试官还可以继续问下去:那么,请问,如何设计一个比较两篇文章相似性的算法?(这个问题的讨论可以看看这里:http://t.cn/zl82CAH,及这里关于simhash算法的介绍:http://www.cnblogs.com/linecong/archive/2010/08/28/simhash.html),接下来,便引出了下文关于夹角余弦的讨论。
上篇blog中第78题的第3小题给出了多种方法,读者可以参看之。同时,程序员编程艺术系列第二十八章将详细阐述这个问题)

  • 9. 夹角余弦(Cosine)
    几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

       

类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度,即: 
     

夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。 

  • 10. 杰卡德相似系数(Jaccard similarity coefficient)
(1) 杰卡德相似系数       
两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。 
 

抱歉!评论已关闭.