现在的位置: 首页 > 综合 > 正文

linux Platform设备驱动

2017年10月26日 ⁄ 综合 ⁄ 共 11247字 ⁄ 字号 评论关闭
PlatForm设备驱动:
一、platform总线、设备与驱动
1.一个现实的Linux设备和驱动通常都需要挂接在一种总线上,对于本身依附于PCI、USB、I2 C、SPI等的设备而言,这自然不是问题,
但是在嵌入式系统里面,SoC系统中集成的独立的外设控制器、挂接在SoC内存空间的外设等确不依附于此类总线。
基于这一背景,Linux发明了一种虚拟的总线,称为platform总线,相应的设备称为platform_device,而驱动成为 platform_driver。
2.注意,所谓的platform_device并不是与字符设备、块设备和网络设备并列的概念,而是Linux系统提供的一种附加手段,
例如,在 S3C6410处理器中,把内部集成的I2C、RTC、SPI、LCD、看门狗等控制器都归纳为platform_device,而它们本身就是字符设备。
3.基于Platform总线的驱动开发流程如下:
(1)定义初始化platform bus
(2)定义各种platform devices
(3)注册各种platform devices
(4)定义相关platform driver
(5)注册相关platform driver
(6)操作相关设备
4.平台相关结构
//platform_device结构体
struct platform_device {
 const char * name;/* 设备名 */
 u32 id;//设备id,用于给插入给该总线并且具有相同name的设备编号,如果只有一个设备的话填-1。
 struct device dev;//结构体中内嵌的device结构体。
 u32 num_resources;/* 设备所使用各类资源数量 */
  struct resource * resource;/* //定义平台设备的资源*/
};
//平台资源结构
struct resource {
 resource_size_t start; //定义资源的起始地址
 resource_size_t end; //定义资源的结束地址
 const char *name; //定义资源的名称
 unsigned long flags; //定义资源的类型,比如MEM,IO,IRQ,DMA类型
 struct resource *parent, *sibling, *child;
};
//设备的驱动:platform_driver这个结构体中包含probe()、remove()、shutdown()、suspend()、 resume()函数,通常也需要由驱动实现。
struct platform_driver {
 int (*probe)(struct platform_device *);
 int (*remove)(struct platform_device *);
 void (*shutdown)(struct platform_device *);
 int (*suspend)(struct platform_device *, pm_message_t state);
 int (*suspend_late)(struct platform_device *, pm_message_t state);
 int (*resume_early)(struct platform_device *);
 int (*resume)(struct platform_device *);
 struct pm_ext_ops *pm;
 struct device_driver driver;
};
 
//系统中为platform总线定义了一个bus_type的实例platform_bus_type,
struct bus_type platform_bus_type = {
 .name = “platform”,
 .dev_attrs = platform_dev_attrs,
 .match = platform_match,
 .uevent = platform_uevent,
 .pm = PLATFORM_PM_OPS_PTR,
};
EXPORT_SYMBOL_GPL(platform_bus_type);
 
//这里要重点关注其match()成员函数,正是此成员表明了platform_device和platform_driver之间如何匹配。
static int platform_match(struct device *dev, struct device_driver *drv)
{
 struct platform_device *pdev;
 pdev = container_of(dev, struct platform_device, dev);
 return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0);
}
//匹配platform_device和platform_driver主要看二者的name字段是否相同。
//对platform_device的定义通常在BSP的板文件中实现,在板文件中,将platform_device归纳为一个数组,最终通过platform_add_devices()函数统一注册。
//platform_add_devices()函数可以将平台设备添加到系统中,这个函数的 原型为:
int platform_add_devices(struct platform_device **devs, int num);
//该函数的第一个参数为平台设备数组的指针,第二个参数为平台设备的数量,它内部调用了platform_device_register()函 数用于注册单个的平台设备。
1. platform bus总线先被kenrel注册。
2. 系统初始化过程中调用platform_add_devices或者platform_device_register,将平台设备(platform devices)注册到平台总线中(platform bus)
3. 平台驱动(platform driver)与平台设备(platform device)的关联是在platform_driver_register或者driver_register中实现,一般这个函数在驱动的初始化过程调用。
通过这三步,就将平台总线,设备,驱动关联起来。
二.Platform初始化
系统启动时初始化时创建了platform_bus总线设备和platform_bus_type总线,platform总线是在内核初始化的时候就注册进了内核。
内核初始化函数kernel_init()中调用了do_basic_setup() ,该函数中调用driver_init(),该函数中调用platform_bus_init(),我们看看platform_bus_init()函数:                                                                                                                  
int __init platform_bus_init(void)
{
       int error;
       early_platform_cleanup(); //清除platform设备链表
       //该函数把设备名为platform 的设备platform_bus注册到系统中,其他的platform的设备都会以它为parent。它在sysfs中目录下.即 /sys/devices/platform。
       //platform_bus总线也是设备,所以也要进行设备的注册
       //struct device platform_bus = {
       //.init_name       = "platform",
        //};
       error = device_register(&platform_bus);//将平台bus作为一个设备注册,出现在device目录 
       if (error)
              return error;
       //接着bus_register(&platform_bus_type)注册了platform_bus_type总线.
       /*
       struct bus_type platform_bus_type = {
     .name = “platform”,
     .dev_attrs = platform_dev_attrs,
     .match = platform_match,
     .uevent = platform_uevent,
     .pm = PLATFORM_PM_OPS_PTR,
    };
       */
       //默认platform_bus_type中没有定义probe函数。
       error =  bus_register(&platform_bus_type);//注册平台类型的bus,将出现在bus目录下
       if (error)
              device_unregister(&platform_bus);
       return error;
}
//总线类型match函数是在设备匹配驱动时调用,uevent函数在产生事件时调用。
//platform_match函数在当属于platform的设备或者驱动注册到内核时就会调用,完成设备与驱动的匹配工作。
static int platform_match(struct device *dev, struct device_driver *drv)
{
       struct platform_device *pdev = to_platform_device(dev);
       struct platform_driver *pdrv = to_platform_driver(drv);
       /* match against the id table first */
       if (pdrv->id_table)
              return platform_match_id(pdrv->id_table, pdev) != NULL;
       /* fall-back to driver name match */
       return (strcmp(pdev->name, drv->name) == 0);//比较设备和驱动的名称是否一样
}
static const struct platform_device_id *platform_match_id(struct platform_device_id *id,struct platform_device *pdev)
{
       while (id->name[0]) {
              if (strcmp(pdev->name, id->name) == 0) {
                     pdev->id_entry = id;
                     return id;
              }
              id++;
       }
       return NULL;
}
//不难看出,如果pdrv的id_table数组中包含了pdev->name,或者drv->name和pdev->name名字相同,都会认为是匹配成功。
//id_table数组是为了应对那些对应设备和驱动的drv->name和pdev->name名字不同的情况。
//再看看platform_uevent()函数:platform_uevent 热插拔操作函数
static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
{
       struct platform_device   *pdev = to_platform_device(dev);
       add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX, (pdev->id_entry) ? pdev->id_entry->name : pdev->name);
       return 0;
}
//添加了MODALIAS环境变量,我们回顾一下:platform_bus. parent->kobj->kset->uevent_ops为device_uevent_ops,bus_uevent_ops的定义如下:
static struct kset_uevent_ops device_uevent_ops = {
       .filter =    dev_uevent_filter,
       .name =          dev_uevent_name,
       .uevent = dev_uevent,
};
//当调用device_add()时会调用kobject_uevent(&dev->kobj, KOBJ_ADD)产生一个事件,这个函数中会调用相应的kset_uevent_ops的uevent函数,
三.Platform设备的注册
我们在设备模型的分析中知道了把设备添加到系统要调用device_initialize()和platform_device_add(pdev)函数。
Platform设备的注册分两种方式:
1.对于platform设备的初注册,内核源码提供了platform_device_add()函数,输入参数platform_device可以是静态的全局设备,它是进行一系列的操作后调用device_add()将设备注册到相应的总线(platform总线)上,
内核代码中platform设备的其他注册函数都是基于这个函数,如platform_device_register()、platform_device_register_simple()、platform_device_register_data()等。
2.另外一种机制就是动态申请platform_device_alloc()一个platform_device设备,然后通过platform_device_add_resources及platform_device_add_data等添加相关资源和属性。
无论哪一种platform_device,最终都将通过platform_device_add这册到platform总线上。
区别在于第二步:其实platform_device_add()包括device_add(),不过要先注册resources,然后将设备挂接到特定的platform总线。
3.第一种平台设备注册方式
//platform_device是静态的全局设备,即platform_device结构的成员已经初始化完成
//直接将平台设备注册到platform总线上
/*platform_device_register和device_register的区别:
(1).主要是有没有resource的区别,前者的结构体包含后面,并且增加了struct resource结构体成员,后者没有。
  platform_device_register在device_register的基础上增加了struct resource部分的注册。
  由此。可以看出,platform_device---paltform_driver_register机制与device-driver的主要区别就在于resource。
  前者适合于具有独立资源设备的描述,后者则不是。
(2).其实linux的各种其他驱动机制的基础都是device_driver。只不过是增加了部分功能,适合于不同的应用场合.
*/
int platform_device_register(struct platform_device *pdev)
{
 device_initialize(&pdev->dev);//初始化platform_device内嵌的device
 return platform_device_add(pdev);//把它注册到platform_bus_type上
}
int platform_device_add(struct platform_device *pdev)
{
  int i, ret = 0;
  if (!pdev)
        return -EINVAL;
  if (!pdev->dev.parent)
   pdev->dev.parent = &platform_bus;//设置父节点,即platform_bus作为总线设备的父节点,其余的platform设备都是它的子设备
   
  //platform_bus是一个设备,platform_bus_type才是真正的总线 
  pdev->dev.bus = &platform_bus_type;//设置platform总线,//指定bus类型为platform_bus_type 
  
  //设置pdev->dev内嵌的kobj的name字段,将platform下的名字传到内部device,最终会//传到kobj  
  if (pdev->id != -1)
        dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);
  else
        dev_set_name(&pdev->dev, "%s", pdev->name);
  
  
  //初始化资源并将资源分配给它,每个资源的它的parent不存在则根据flags域设置parent,flags为IORESOURCE_MEM,
  //则所表示的资源为I/O映射内存,flags为IORESOURCE_IO,则所表示的资源为I/O端口。
  for (i = 0; i < pdev->num_resources; i++) {
      struct resource *p, *r = &pdev->resource[i];
      if (r->name == NULL)//资源名称为NULL则把设备名称设置给它
        r->name = dev_name(&pdev->dev);
             
      p = r->parent;//取得资源的父节点,资源在内核中也是层次安排的
      if (!p) {
         if (resource_type(r) == IORESOURCE_MEM) //如果父节点为NULL,并且资源类型为IORESOURCE_MEM,则把父节点设置为iomem_resource 
           p = &iomem_resource;
         else if (resource_type(r) == IORESOURCE_IO)//否则如果类型为IORESOURCE_IO,则把父节点设置为ioport_resource
            p = &ioport_resource;
      }
      
       //将资源插入父节点,也就是出现在父节点目录层次下 
      if (p && insert_resource(p, r)) {
         printk(KERN_ERR "%s: failed to claim resource %d\n",dev_name(&pdev->dev), i);ret = -EBUSY;
         goto failed;
      }
  }
  
  pr_debug("Registering platform device '%s'. Parent at %s\n",dev_name(&pdev->dev), dev_name(pdev->dev.parent));
  ret = device_add(&pdev->dev);//就在这里把设备注册到总线设备上,标准设备注册
  if (ret == 0)
        return ret;
  
  failed:
  while (--i >= 0) {
        struct resource *r = &pdev->resource[i];
        unsigned long type = resource_type(r);
        if (type == IORESOURCE_MEM || type == IORESOURCE_IO)
               release_resource(r);
  }
  return ret;
}
4.第二种平台设备注册方式
//先分配一个platform_device结构,对其进行资源等的初始化
//之后再对其进行注册,再调用platform_device_register()函数
struct platform_device * platform_device_alloc(const char *name, int id)
{
 struct platform_object *pa;
 /*
 struct platform_object {
       struct platform_device pdev;
       char name[1];
 };
 */
 pa = kzalloc(sizeof(struct platform_object) + strlen(name), GFP_KERNEL);//该函数首先为platform设备分配内存空间
 if (pa) {
  strcpy(pa->name, name);
  pa->pdev.name = pa->name;//初始化platform_device设备的名称
  pa->pdev.id = id;//初始化platform_device设备的id
  device_initialize(&pa->pdev.dev);//初始化platform_device内嵌的device
  pa->pdev.dev.release = platform_device_release;
 }
 return pa ? &pa->pdev : NULL;
}
//一个更好的方法是,通过下面的函数platform_device_register_simple()动态创建一个设备,并把这个设备注册到系统中:
struct platform_device *platform_device_register_simple(const char *name,int id,struct resource *res,unsigned int num)
{
       struct platform_device *pdev;
       int retval;
       pdev = platform_device_alloc(name, id);
       if (!pdev) {
              retval = -ENOMEM;
              goto error;
       }
       if (num) {
              retval = platform_device_add_resources(pdev, res, num);
              if (retval)
                     goto error;
       }
       retval = platform_device_add(pdev);
       if (retval)
              goto error;
              
       return pdev;
error:
       platform_device_put(pdev);
       return ERR_PTR(retval);
}
//该函数就是调用了platform_device_alloc()和platform_device_add()函数来创建的注册platform device,函数也根据res参数分配资源,看看platform_device_add_resources()函数:
int platform_device_add_resources(struct platform_device *pdev,struct resource *res, unsigned int num)
{
       struct resource *r;
       r = kmalloc(sizeof(struct resource) * num, GFP_KERNEL);//为资源分配内存空间
       if (r) {
              memcpy(r, res, sizeof(struct resource) * num);
              pdev->resource = r;        //并拷贝参数res中的内容,链接到device并设置其num_resources
              pdev-> num_resources = num;
       }
       return r ? 0 : -ENOMEM;
}

四.Platform设备驱动的注册
我们在设备驱动模型的分析中已经知道驱动在注册要调用driver_register(),
platform driver的注册函数platform_driver_register()同样也是进行其它的一些初始化后调用driver_register()将驱动注册到platform_bus_type总线上.
int platform_driver_register(struct platform_driver *drv)
{
       drv->driver.bus = &platform_bus_type;//它将要注册到的总线
   /*设置成platform_bus_type这个很重要,因为driver和device是通过bus联系在一起的,
   具体在本例中是通过 platform_bus_type中注册的回调例程和属性来是实现的,
   driver与device的匹配就是通过 platform_bus_type注册的回调例程platform_match ()来完成的。
   */
       if (drv->probe)
              drv-> driver.probe = platform_drv_probe;
       if (drv->remove)
              drv->driver.remove = platform_drv_remove;
       if (drv->shutdown)
              drv->driver.shutdown = platform_drv_shutdown;
       return driver_register(&drv->driver);//注册驱动
}
//然后设定了platform_driver内嵌的driver的probe、remove、shutdown函数。
static int platform_drv_probe(struct device *_dev)
{
       struct platform_driver *drv = to_platform_driver(_dev->driver);
       struct platform_device *dev = to_platform_device(_dev);
       return drv->probe(dev);//调用platform_driver的probe()函数,这个函数一般由用户自己实现
                   //例如下边结构,回调的是serial8250_probe()函数
        /*
    static struct platform_driver serial8250_isa_driver = {
     .probe  = serial8250_probe,
     .remove  = __devexit_p(serial8250_remove),
     .suspend = serial8250_suspend,
     .resume  = serial8250_resume,
     .driver  = {
      .name = "serial8250",
      .owner = THIS_MODULE,
     },
    };
    */
}
static int platform_drv_remove(struct device *_dev)
{
       struct platform_driver *drv = to_platform_driver(_dev->driver);
       struct platform_device *dev = to_platform_device(_dev);
       return drv->remove(dev);
}
static void platform_drv_shutdown(struct device *_dev)
{
       struct platform_driver *drv = to_platform_driver(_dev->driver);
       struct platform_device *dev = to_platform_device(_dev);
       drv->shutdown(dev);
}
//总结:
1.从这三个函数的代码可以看到,又找到了相应的platform_driver和platform_device,然后调用platform_driver的probe、remove、shutdown函数。这是一种高明的做法:
在不针对某个驱动具体的probe、remove、shutdown指向的函数,而通过上三个过度函数来找到platform_driver,然后调用probe、remove、shutdown接口。
如果设备和驱动都注册了,就可以通过bus ->match、bus->probe或driver->probe进行设备驱动匹配了。
2.驱动注册的时候platform_driver_register()->driver_register()->bus_add_driver()->driver_attach()->bus_for_each_dev(),
对每个挂在虚拟的platform bus的设备作__driver_attach()->driver_probe_device()->drv->bus->match()==platform_match()->比较strncmp(pdev->name, drv->name, BUS_ID_SIZE),
如果相符就调用platform_drv_probe()->driver->probe(),如果probe成功则绑定该设备到该驱动。

抱歉!评论已关闭.