现在的位置: 首页 > 综合 > 正文

per cpu 变量

2017年12月22日 ⁄ 综合 ⁄ 共 2916字 ⁄ 字号 评论关闭

 

Linux内核对per-cpu变量的实现
2011-08-01 21:00

http://embexperts.com/viewthread.php?tid=131

 

在Linux中,per-cpu变量用在多处理器系统中,用来为系统中的每个cpu都生成一个变量的副本,以避开多处理器互斥中的加锁问题,另一个是cpu本地的变量可以充分利用cpu的硬件缓存,提高性能。本贴讨论一下Linux内核对per-cpu变量的代码实现。

1.静态per-cpu变量
静态per-cpu变量通过DEFINE_PER_CPU和DECLARE_PER_CPU宏在内核源码中定义和声明一个per-cpu变量。这些变量与普通变量的主要区别是放在一个特殊的section里。

静态percpu变量比较好理解,内核的代码也比较简洁明快。

相对静态per-cpu变量,还有动态分配的per-cpu变量。普通变量动态分配很简单,用kmalloc或者kzalloc都可以的,其实per- cpu变量的动态分配也是需要利用Linux内核底层的分配函数,页面分配器。从这个角度而言,percpu memory allocator与slab memory allocator是一个层面的东西,都建立在page memory allocator基础之上。不过对于大部分驱动程序员而言,使用kmalloc与kzalloc的机会要远远大于percpu
memory allocator。

1楼的图显示了静态per-cpu变量在有两个处理器中一个实现情况,为了描述,这里做个定义,CPU0与CPU1变量副本的空间大小完全一样,本贴统称这两个副本空间为副本空间,每个CPU变量副本所在空间为单元空间。
在内核初始化期间调用的setup_percpu_areas函数中,给图中的reserve和dynamic空间大约定义的大小是8KB和12KB,static空间由系统中定义的静态per-cpu变量的多少来决定。

Linux内核对percpu memory allocator使用了所谓chunk的实现方式,它实现了统一的静态per-cpu和动态per-cpu变量的实现(其实静态per-cpu变量的实现不需要chunk,但是为了统一,也把它放到chunk的管理体系,就算是大一统吧).

chunk干什么事呢?chunk是一个管理数据结构,就称之为容器吧。看看具体的数据结构还是很有必要:

struct pcpu_chunk {
        struct list_head        list;                /* linked to pcpu_slot lists */
        int                        free_size;        /* free bytes in the chunk */
        int                        contig_hint;        /* max contiguous size hint */
        void                        *base_addr;        /* base address of this chunk */
        int                        map_used;        /* # of map entries used */
        int                        map_alloc;        /* # of map entries allocated */
        int                        *map;                /* allocation map */
        void                        *data;                /* chunk data */
        bool                        immutable;        /* no [de]population allowed */
        unsigned long                populated[];        /* populated bitmap */
};

复制代码

list:用来把chunk链接起来形成链表。每一个链表又都放到pcpu_slot数组中,根据chunk中空闲空间的大小决定放到数组的哪个元素中。
contig_hint:该chunk所管理的副本空间中空闲空间大小。
base_addr:简单地说,副本空间首地址。1楼图的副本空间也是由一个chunk来管,称之为first chunk中,副本空间中的dynamic空间用来给动态per-cpu变量使用
map_used:为了对chunk所管理的副本空间分配情况的跟踪,用来表示可以管理的个数
map_alloc:已经分配的小块个数,因为每个分配的小块都是给动态per-cpu使用的,所以其实是已经分配的变量的个数
map:整数数组,用来表示副本空间分配情况。正数表示该空间空闲,负数就已经分配给一个变量了
data:指向分配的页数据

大体上就这些。

动态分配一个per-cpu变量时,在pcpu_slot空间查找空闲空间可以满足需要的chunk,如果找不到这样的chunk,那么重新分配一个chunk,用kzalloc函数。
对一个新的chunk都会调用pcpu_get_vm_areas分配VM空间地址:

static struct pcpu_chunk *pcpu_create_chunk(void)
{
        struct pcpu_chunk *chunk;
        struct vm_struct **vms;

        chunk = pcpu_alloc_chunk();
        if (!chunk)
                return NULL;

        vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
                                pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
        if (!vms) {
                pcpu_free_chunk(chunk);
                return NULL;
        }

        chunk->data = vms;
        chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
        return chunk;
}

复制代码

pcpu_group_offsets[0]对于非变态的系统都是0.

所以,动态分配per-cpu变量时,先在chunk所管理的副本空间(在VM区中),然后用到哪个页面就往那个对应的vm上提交物理页面。
副本空间上实行小额分配,实际上就是有新变量分配,就在副本空间里头找,找到以后看这个vm处的地址有没有被映射到物理地址,没有就提交页面,否则不提(都提了干吗还提交呢?!),判断vm处是否提交了物理页面用bit map跟踪,chunk的数据结构中的后两个成员用来干这事。

OK,分配一个新变量之后,返回给你的是一个vm区中的地址,要让每个cpu访问到自己的vm区,得用内核自己定义的宏,其实核心思想就是用smp_get_processorid等来获得对应cpu变量在变量副本中的偏移地址,然后返回来了。

要想验证上面说的对不对,可以在内核中打印出alloc_percpu返回的地址,是否在VM区。

【上篇】
【下篇】

抱歉!评论已关闭.