现在的位置: 首页 > 综合 > 正文

init进程【4】——属性服务

2018年02月15日 ⁄ 综合 ⁄ 共 14000字 ⁄ 字号 评论关闭
文章目录

欢迎转载,转载请注明:http://blog.csdn.net/zhgxhuaa

Android中的属性主要用来保存一些全局性的信息,这里可以理解为Android中的“注册表”。Android中的属性服务只针对系统开发者使用,并不对应用开发者开发,这通过SystemProperties是hide的可以看出。下面让我们一起来剖析属性服务。

初始化属性空间

在init进程启动一文中我们讲到,init的其中一个作用就是启动系统属性服务。在init进程的main()函数中有这样一句:

@system/core/init/init.c

property_init();//属性服务初始化

property_init()的实现如下:

@system/core/init/property_service.c

void property_init(void)
{
    init_property_area();
}

从字面意思来看init_property_area是用来初始化属性存储区域,让我们来看一下:

@system/core/init/property_service.c

static int init_property_area(void)
{
    if (property_area_inited)//属性区域已初始化则直接返回,不再初始化
        return -1;

    if(__system_property_area_init())//通过mmap创建共享内存
        return -1;

    if(init_workspace(&pa_workspace, 0))//初始化pa_workspace
        return -1;

    fcntl(pa_workspace.fd, F_SETFD, FD_CLOEXEC);

    property_area_inited = 1;
    return 0;
}

通过上面的代码我们可以知道,属性服务是创建在共享内存上的,通过共享内存实现跨进程的访问。那共享内存是如何创建的呢?来看一下__system_property_area_init的实现:

@/bionic/libc/bionic/system_properties.c

int __system_property_area_init()
{
    return map_prop_area_rw();
}
static int map_prop_area_rw()
{
    prop_area *pa;
    int fd;
    int ret;

    /* dev is a tmpfs that we can use to carve a shared workspace
     * out of, so let's do that...
     */
    fd = open(property_filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC |
            O_EXCL, 0444);//打开property_filename文件,即:/dev/__properties__
    if (fd < 0) {
        if (errno == EACCES) {
            /* for consistency with the case where the process has already
             * mapped the page in and segfaults when trying to write to it
             */
            abort();
        }
        return -1;
    }

    ret = fcntl(fd, F_SETFD, FD_CLOEXEC);//这里设置为FD_CLOEXEC表示当程序执行exec函数时本fd将被系统自动关闭,表示不传递给exec创建的新进程
    if (ret < 0)
        goto out;

    if (ftruncate(fd, PA_SIZE) < 0)//更改fd指向文件的大小为PA_SIZE(128 * 1024)大小
        goto out;

    pa_size = PA_SIZE;//设置属性空间的大小为PA_SIZE(128 * 1024)
    pa_data_size = pa_size - sizeof(prop_area);//属性空间中可以用来保存属性的区域的大小,prop_area用来保存属性空间自身的一些信息
    compat_mode = false;

    pa = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);//映射属性文件到进程
    if(pa == MAP_FAILED)
        goto out;

    memset(pa, 0, pa_size);//初始化属性区域
    pa->magic = PROP_AREA_MAGIC;
    pa->version = PROP_AREA_VERSION;
    /* reserve root node */
    pa->bytes_used = sizeof(prop_bt);

    /* plug into the lib property services */
    __system_property_area__ = pa;

    close(fd);
    return 0;

out:
    close(fd);
    return -1;
}

上面的内容比较简单,不过最后的赋值语句可是大有来头。_system_property_area_是bionic libc库中输出的一个变量,为什么这里要给她赋值呢?

原来,虽然属性区域是由init进程创建的,但是Android系统希望其他进程也能够读取这块内存的东西。为了做到这一点,它便做了一下两项工作:

  • 把属性区域创建在共享内存上,而共享内存是可以跨进程的。
  • 如何让其他进程知道这个共享内存呢?Android利用gcc的constructor属性,这个属性指明了一个_libc_prenit函数,当bionic libc库被加载时,将自动调用这个_libc_prenit,这个函数内部完成共享内存到本地进程的映射工作。(这一段说明转自:《深入理解Android:卷1》)

关于上面的内容来看下面的代码:

@/bionic/libc/bionic/libc_init_dynamic.cpp

// We flag the __libc_preinit function as a constructor to ensure
// that its address is listed in libc.so's .init_array section.
// This ensures that the function is called by the dynamic linker
// as soon as the shared library is loaded.
__attribute__((constructor)) static void __libc_preinit() {
  // Read the kernel argument block pointer from TLS.
  void* tls = const_cast<void*>(__get_tls());
  KernelArgumentBlock** args_slot = &reinterpret_cast<KernelArgumentBlock**>(tls)[TLS_SLOT_BIONIC_PREINIT];
  KernelArgumentBlock* args = *args_slot;

  // Clear the slot so no other initializer sees its value.
  // __libc_init_common() will change the TLS area so the old one won't be accessible anyway.
  *args_slot = NULL;

  __libc_init_common(*args);

  // Hooks for the debug malloc and pthread libraries to let them know that we're starting up.
  pthread_debug_init();
  malloc_debug_init();
}

@/bionic/libc/bionic/libc_init_common.cpp

void __libc_init_common(KernelArgumentBlock& args) {
  // Initialize various globals.
  environ = args.envp;
  errno = 0;
  __libc_auxv = args.auxv;
  __progname = args.argv[0] ? args.argv[0] : "<unknown>";
  __abort_message_ptr = args.abort_message_ptr;

  // AT_RANDOM is a pointer to 16 bytes of randomness on the stack.
  __stack_chk_guard = *reinterpret_cast<uintptr_t*>(getauxval(AT_RANDOM));

  // Get the main thread from TLS and add it to the thread list.
  pthread_internal_t* main_thread = __get_thread();
  main_thread->allocated_on_heap = false;
  _pthread_internal_add(main_thread);

  __system_properties_init(); // Requires 'environ'.
}

@/bionic/libc/bionic/system_properties.c

int __system_properties_init()
{
    return map_prop_area();
}
static int map_prop_area()
{
    bool fromFile = true;
    int result = -1;
    int fd;
    int ret;

    fd = open(property_filename, O_RDONLY | O_NOFOLLOW | O_CLOEXEC);
    if (fd >= 0) {
        /* For old kernels that don't support O_CLOEXEC */
        ret = fcntl(fd, F_SETFD, FD_CLOEXEC);
        if (ret < 0)
            goto cleanup;
    }

    if ((fd < 0) && (errno == ENOENT)) {
        /*
         * For backwards compatibility, if the file doesn't
         * exist, we use the environment to get the file descriptor.
         * For security reasons, we only use this backup if the kernel
         * returns ENOENT. We don't want to use the backup if the kernel
         * returns other errors such as ENOMEM or ENFILE, since it
         * might be possible for an external program to trigger this
         * condition.
         */
        fd = get_fd_from_env();
        fromFile = false;
    }

    if (fd < 0) {
        return -1;
    }

    struct stat fd_stat;
    if (fstat(fd, &fd_stat) < 0) {
        goto cleanup;
    }

    if ((fd_stat.st_uid != 0)
            || (fd_stat.st_gid != 0)
            || ((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0)
            || (fd_stat.st_size < sizeof(prop_area)) ) {
        goto cleanup;
    }

    pa_size = fd_stat.st_size;
    pa_data_size = pa_size - sizeof(prop_area);
    prop_area *pa = mmap(NULL, pa_size, PROT_READ, MAP_SHARED, fd, 0);

    if (pa == MAP_FAILED) {
        goto cleanup;
    }

    if((pa->magic != PROP_AREA_MAGIC) || (pa->version != PROP_AREA_VERSION &&
                pa->version != PROP_AREA_VERSION_COMPAT)) {
        munmap(pa, pa_size);
        goto cleanup;
    }

    if (pa->version == PROP_AREA_VERSION_COMPAT) {
        compat_mode = true;
    }

    result = 0;

    __system_property_area__ = pa;

cleanup:
    if (fromFile) {
        close(fd);
    }

    return result;
}

对比上面map_prop_area_rw()和map_prop_area()这两个方法,我们可以发现他们在打开文件和进行映射时的不同。在map_prop_area_rw()中:

static int map_prop_area_rw()
{
    ......

    fd = open(property_filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC |
            O_EXCL, 0444);
    
    ......
        
    pa = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);//映射属性文件到进程

    ......
}

在map_prop_area()中:

static int map_prop_area()
{
    ......

    fd = open(property_filename, O_RDONLY | O_NOFOLLOW | O_CLOEXEC);
    
    ......
    
    prop_area *pa = mmap(NULL, pa_size, PROT_READ, MAP_SHARED, fd, 0);

    ......
}

map_prop_area_rw()是init进程初始化属性服务时调用到的;map_prop_area()则是其他进程通过bionic初始化时调用的。通过对比,也说明只有init进程才拥有属性的写权限,其他进程只能读。好了,到这里又引出来另外一个问题,其他进程要想设置属性,应该怎么做呢?

属性服务

启动属性服务

在init进程的main()中,我们可以看见如下语句:

@system/core/init/init.c

queue_builtin_action(property_service_init_action, "property_service_init");

这句话的意思是启动action链表中的property服务:

static int property_service_init_action(int nargs, char **args)
{
    /* read any property files on system or data and
     * fire up the property service.  This must happen
     * after the ro.foo properties are set above so
     * that /data/local.prop cannot interfere with them.
     */
    start_property_service();
    return 0;
}

start_property_service()的实现如下:

@system/core/init/property_service.c

void start_property_service(void)
{
    int fd;

    load_properties_from_file(PROP_PATH_SYSTEM_BUILD);
    load_properties_from_file(PROP_PATH_SYSTEM_DEFAULT);
    load_override_properties();
    /* Read persistent properties after all default values have been loaded. */
    load_persistent_properties();

    fd = create_socket(PROP_SERVICE_NAME, SOCK_STREAM, 0666, 0, 0);
    if(fd < 0) return;
    fcntl(fd, F_SETFD, FD_CLOEXEC);
    fcntl(fd, F_SETFL, O_NONBLOCK);

    listen(fd, 8);
    property_set_fd = fd;
}

关于这段代码做一些说明:

在Android中定义了5个存储属性的文件,它们分别是:

@/bionic/libc/includes/sys/_system_properties.h

#define PROP_PATH_RAMDISK_DEFAULT  "/default.prop"
#define PROP_PATH_SYSTEM_BUILD     "/system/build.prop"
#define PROP_PATH_SYSTEM_DEFAULT   "/system/default.prop"
#define PROP_PATH_LOCAL_OVERRIDE   "/data/local.prop"
#define PROP_PATH_FACTORY          "/factory/factory.prop"

load_persistent_properties()用来加载persist开头的属性文件,这些属性文件是需要保存到永久介质上的,这些属性文件存储在/data/property目录下,并且文件名必须以“psesist."开头,下面是我的手机上的persist属性文件:

在start_property_service()的最后创建了一个名为"property_service"的socket,启动监听,并将socket的句柄保存在property_set_fd中。

处理设置属性请求

接收属性设置请求的地方在init进程中:

        nr = poll(ufds, fd_count, timeout);
        if (nr <= 0)
            continue;

        for (i = 0; i < fd_count; i++) {
            if (ufds[i].revents == POLLIN) {
                if (ufds[i].fd == get_property_set_fd())
                    handle_property_set_fd();
                else if (ufds[i].fd == get_keychord_fd())
                    handle_keychord();
                else if (ufds[i].fd == get_signal_fd())
                    handle_signal();
            }
        }
    }

可以看到,在init接收到其他进程设置属性的请求时,会调用handle_property_set_fd()函数进程处理:

@system/core/init/property_service.c

void handle_property_set_fd()
{
    prop_msg msg;
    int s;
    int r;
    int res;
    struct ucred cr;
    struct sockaddr_un addr;
    socklen_t addr_size = sizeof(addr);
    socklen_t cr_size = sizeof(cr);
    char * source_ctx = NULL;

    if ((s = accept(property_set_fd, (struct sockaddr *) &addr, &addr_size)) < 0) {
        return;
    }

    /* Check socket options here */
    if (getsockopt(s, SOL_SOCKET, SO_PEERCRED, &cr, &cr_size) < 0) {
        close(s);
        ERROR("Unable to receive socket options\n");
        return;
    }

    r = TEMP_FAILURE_RETRY(recv(s, &msg, sizeof(msg), 0));
    if(r != sizeof(prop_msg)) {
        ERROR("sys_prop: mis-match msg size received: %d expected: %d errno: %d\n",
              r, sizeof(prop_msg), errno);
        close(s);
        return;
    }

    switch(msg.cmd) {
    case PROP_MSG_SETPROP:
        msg.name[PROP_NAME_MAX-1] = 0;
        msg.value[PROP_VALUE_MAX-1] = 0;

        if (!is_legal_property_name(msg.name, strlen(msg.name))) {
            ERROR("sys_prop: illegal property name. Got: \"%s\"\n", msg.name);
            close(s);
            return;
        }

        getpeercon(s, &source_ctx);

        if(memcmp(msg.name,"ctl.",4) == 0) {
            // Keep the old close-socket-early behavior when handling
            // ctl.* properties.
            close(s);
            if (check_control_perms(msg.value, cr.uid, cr.gid, source_ctx)) {
                handle_control_message((char*) msg.name + 4, (char*) msg.value);
            } else {
                ERROR("sys_prop: Unable to %s service ctl [%s] uid:%d gid:%d pid:%d\n",
                        msg.name + 4, msg.value, cr.uid, cr.gid, cr.pid);
            }
        } else {
            if (check_perms(msg.name, cr.uid, cr.gid, source_ctx)) {
                property_set((char*) msg.name, (char*) msg.value);
            } else {
                ERROR("sys_prop: permission denied uid:%d  name:%s\n",
                      cr.uid, msg.name);
            }

            // Note: bionic's property client code assumes that the
            // property server will not close the socket until *AFTER*
            // the property is written to memory.
            close(s);
        }
        freecon(source_ctx);
        break;

    default:
        close(s);
        break;
    }
}

从上面的代码可以看出在进行一系列检查和判断后,最后悔调用property_set()函数设置属性,其实现如下:

int property_set(const char *name, const char *value)
{
    prop_info *pi;
    int ret;

    size_t namelen = strlen(name);
    size_t valuelen = strlen(value);

    if (!is_legal_property_name(name, namelen)) return -1;
    if (valuelen >= PROP_VALUE_MAX) return -1;

    pi = (prop_info*) __system_property_find(name);

    if(pi != 0) {
        /* ro.* properties may NEVER be modified once set */
        if(!strncmp(name, "ro.", 3)) return -1;

        __system_property_update(pi, value, valuelen);
    } else {
        ret = __system_property_add(name, namelen, value, valuelen);
        if (ret < 0) {
            ERROR("Failed to set '%s'='%s'\n", name, value);
            return ret;
        }
    }
    /* If name starts with "net." treat as a DNS property. */
    if (strncmp("net.", name, strlen("net.")) == 0)  {
        if (strcmp("net.change", name) == 0) {
            return 0;
        }
       /*
        * The 'net.change' property is a special property used track when any
        * 'net.*' property name is updated. It is _ONLY_ updated here. Its value
        * contains the last updated 'net.*' property.
        */
        property_set("net.change", name);
    } else if (persistent_properties_loaded &&
            strncmp("persist.", name, strlen("persist.")) == 0) {
        /*
         * Don't write properties to disk until after we have read all default properties
         * to prevent them from being overwritten by default values.
         */
        write_persistent_property(name, value);
    } else if (strcmp("selinux.reload_policy", name) == 0 &&
               strcmp("1", value) == 0) {
        selinux_reload_policy();
    }
    property_changed(name, value);
    return 0;
}

从上面的代码可以看出:首先会判断所设置属性的属性名和属性值是否超过限制,这个限制定义如下:

@bionic/libc/includes/sys/system _properties.h

#define PROP_NAME_MAX   32
#define PROP_VALUE_MAX  92

可以看出属性名最长不能超过32个字符;属性值最长不能超过92个字符,到这里我们也可以根据之前map_prop_area_rw()中的信息推断出,系统总共可以支持多少个属性:

    pa_size = PA_SIZE;//设置属性空间的大小为PA_SIZE(128 * 1024)
    pa_data_size = pa_size - sizeof(prop_area);//属性空间中可以用来保存属性的区域的大小,prop_area用来保存属性空间自身的一些信息
    compat_mode = false;

按照这里的推断,系统支持1000多个属性的样子。这里与之前比较老的Android版本有所不同,在老的Android版本中系统最多支持的属性个数为247个。

在判断文新添加属性的合法性以后接下来会判断该属性是否以存在,如果已存在则更新属性的值即可,如果不存在则增加新的属性。

然后还有剩下的一些其他判断,这里就不再赘述。到时最后一句property_changed()引起了我的注意:

property_changed(name, value);

看到这里,你有没有想起些什么?是的,init.rc中类似于下面这样的句子就是在这里通过property_changed()触发的。

on property:vold.decrypt=trigger_restart_min_framework
    class_start main

on property:vold.decrypt=trigger_restart_framework
    class_start main
    class_start late_start

OK,到这里属性服务相关的东东基本介绍完了。接下来简单介绍一下如何设置系统属性。

设置系统属性

C代码中属性的设置是由libcutils库提供的,代码如下:

@system/core/libutils/properties.c

int property_set(const char *key, const char *value)
{
    return __system_property_set(key, value);
}

@/bionic/libc/bionic/system_property

int __system_property_set(const char *key, const char *value)
{
    int err;
    prop_msg msg;

    if(key == 0) return -1;
    if(value == 0) value = "";
    if(strlen(key) >= PROP_NAME_MAX) return -1;
    if(strlen(value) >= PROP_VALUE_MAX) return -1;

    memset(&msg, 0, sizeof msg);
    msg.cmd = PROP_MSG_SETPROP;
    strlcpy(msg.name, key, sizeof msg.name);
    strlcpy(msg.value, value, sizeof msg.value);

    err = send_prop_msg(&msg);
    if(err < 0) {
        return err;
    }

    return 0;
}

注意这里的msg.cmd = PROP_MSG_SETPROP,send_prop_msg()的实现如下:

static int send_prop_msg(prop_msg *msg)
{
    struct pollfd pollfds[1];
    struct sockaddr_un addr;
    socklen_t alen;
    size_t namelen;
    int s;
    int r;
    int result = -1;

    s = socket(AF_LOCAL, SOCK_STREAM, 0);
    if(s < 0) {
        return result;
    }

    memset(&addr, 0, sizeof(addr));
    namelen = strlen(property_service_socket);
    strlcpy(addr.sun_path, property_service_socket, sizeof addr.sun_path);
    addr.sun_family = AF_LOCAL;
    alen = namelen + offsetof(struct sockaddr_un, sun_path) + 1;

    if(TEMP_FAILURE_RETRY(connect(s, (struct sockaddr *) &addr, alen)) < 0) {
        close(s);
        return result;
    }

    r = TEMP_FAILURE_RETRY(send(s, msg, sizeof(prop_msg), 0));

    if(r == sizeof(prop_msg)) {
        // We successfully wrote to the property server but now we
        // wait for the property server to finish its work.  It
        // acknowledges its completion by closing the socket so we
        // poll here (on nothing), waiting for the socket to close.
        // If you 'adb shell setprop foo bar' you'll see the POLLHUP
        // once the socket closes.  Out of paranoia we cap our poll
        // at 250 ms.
        pollfds[0].fd = s;
        pollfds[0].events = 0;
        r = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */));
        if (r == 1 && (pollfds[0].revents & POLLHUP) != 0) {
            result = 0;
        } else {
            // Ignore the timeout and treat it like a success anyway.
            // The init process is single-threaded and its property
            // service is sometimes slow to respond (perhaps it's off
            // starting a child process or something) and thus this
            // times out and the caller thinks it failed, even though
            // it's still getting around to it.  So we fake it here,
            // mostly for ctl.* properties, but we do try and wait 250
            // ms so callers who do read-after-write can reliably see
            // what they've written.  Most of the time.
            // TODO: fix the system properties design.
            result = 0;
        }
    }

    close(s);
    return result;
}

设置属性的请求在这里被通过socket发送出去。

Java层设置属性的方法位于SystemProperties类中,在该类中实现了一系列set/get方法,Java代码中就是通过这些set/get方法设置和读取系统属性的。

@/framework/base/core/ java/android/os/SystemProperties.java

    /**
     * Set the value for the given key.
     * @throws IllegalArgumentException if the key exceeds 32 characters
     * @throws IllegalArgumentException if the value exceeds 92 characters
     */
    public static void set(String key, String val) {
        if (key.length() > PROP_NAME_MAX) {
            throw new IllegalArgumentException("key.length > " + PROP_NAME_MAX);
        }
        if (val != null && val.length() > PROP_VALUE_MAX) {
            throw new IllegalArgumentException("val.length > " +
                PROP_VALUE_MAX);
        }
        native_set(key, val);
    }

注意到这里最终会调用到native的set方法。

private static native void native_set(String key, String def);

看到这里,接下来会调到那里去,相信大家应该都清楚了。。。

抱歉!评论已关闭.