现在的位置: 首页 > 综合 > 正文

RTP - 视频流广播

2018年03月16日 ⁄ 综合 ⁄ 共 18108字 ⁄ 字号 评论关闭

这是用RTP(RFC3350)按RFC2550封装MPEG ES流数据的发送程序。学习RTP的路真的辛苦。在网上收集的有关RTP的程序都是那种只负责RTP数据包发送的库,如jrtplib等,他们的DEMO 程序都只是用来发发字符串,编编聊天程序,无论是国内还是国外,都没有结合真正的应用的DEMO。其实我的目的很简单,就是写发个视频流服务器,不用复杂,只用把基本原理弄懂,因为这样你才能有的放矢。与网上和RTP相关的库没有应用不一让,当你尝试以流媒体服务器、linux来baidu或 google时,你搜出来完非就那么几类:

1.FFSERVER
     FFMPEG2的DEMO,说它有名只是因为这类程序太少了。FFMPEG2是很好用,我现在还在用,但这个DEMO就有很多“炒作”的嫌疑了。好像在做着FFMPEG2库的演示而不是真的视频流服务器。后来想想,这不正是作者想要的吗,但这不是我想要的。编解码部分我会很偏向FFMPEG这个“大杂会 ”,其它部分我会选择其它的“强者”

2.Darwin、Helix
     两个都是非常有名软件,也只能称之为软件了,因为就算Darwin有源码,这种代码规模,也不适合用于嵌入式。说回软件本身,真的很有名。它们都是很真真拿来商业化运行的软件,但我是研发人员,不是视频流服务商,对不起,Apple,对不起,Microsoft。

3.LIVE555
     如果说上面两个和我都相关性为零(当然了,也是困扰了N周以后痛苦得出的结论),那LIVE555真的给了我一条出路,它是一个代码规模非常合适,又非常强大的媒体解决方案(称之为方案是因为它功能非常的丰富)。有长一段时间,我想去弄懂它的源码,不过和网上的很多人一样,最后软下来了,毕竟,去把这么多东西揉在一起,框架会弄得很复杂,因为我们要把这些完全不同的东西不断一层一层的抽像,最后抽像成一样(哲学呀)。它结构复杂是我中断分析它原来的其中一个原因,但不是主要原因。它结构的复杂程度也没胡像很多人网上说的那样严重,如果你是一个C++的热忱爱好者,你反而会迷上这段代码,当然了,对C的爱好都来说,当然是一种折磨了。暂时把我自己归类在C++爱好者范畴吧,呵呵,我很欣赏这段原码。主要原因是我不希望被某一个库绑死。LIVE555是有编解码能力,但我更希望它只做服务器的工作。

     因此,最终后回来的老路上来,没有帮助,就得自己帮自己,从最基础的RFC看起。经过了N天(周)的英文,终于领会了如果在RTP承载MPEG数据包。在这个过程中很得到了一些LIVE555的帮助(通过对Ethereal捕捉的LIVE555数据包进行分析)。先把程序弄上来,原理性的以后有空再写,程序只有一个.cpp文件,在vs.net 2003下编译通过,播放的视频文件在http://www.cnitblog.com/Files/tinnal/ES流解释程序.rar   内,播放的客户端采用VLC,其下载地址为http://www.videolan.org/ 。选择打开网络串流,然后选择“UDP/RTP”端口,输入程序的输出端口1000,然后才运行程序,你将在VLC内看到测试的广播视频,IP不一样的话自己改改就行。其它所谓的原理性的,也就是看RFC 3350、RFC2550以及iso13818-2的一些重点地方。

   // MPEG2RTP.h
#include
< stdio.h >
#include
< stdlib.h >
#include
< conio.h >
#include
< string .h >

#include
< winsock2.h >
#include
< winsock2.h >


// #include "mem.h"

// <! Start code or other signal
#define PACK_STARTCODE                     (unsigned int)0x000001ba
#define SYSTEM_HEADER_STARTCODE     (unsigned int)0x000001bb
#define PICTURE_START_CODE               (unsigned int)0x00000100
#define GROUP_START_CODE            (unsigned int)0x000000B8
#define ISO_11172_ENDCODE             (unsigned int)0x000001b9
#define SEQUENCE_HEADER_CODE        (unsigned int)0x000001b3

#define PACKET_BUFFER_END            (unsigned int)0x00000000


#define MAX_RTP_PKT_LENGTH     1440
#define HEADER_LENGTH        16
#define DEST_IP                "192.168.0.98"
#define DEST_PORT            1000
#define MPA                    14 /*MPEG PAYLOAD TYPE */
#define MPV                    32

typedef
struct  
{
   
/* byte 0 */
    unsigned
char csrc_len: 4 ;        /* expect 0 */
    unsigned
char extension: 1 ;        /* expect 1, see RTP_OP below */
    unsigned
char padding: 1 ;        /* expect 0 */
    unsigned
char version: 2 ;        /* expect 2 */
   
/* byte 1 */
    unsigned
char payload: 7 ;        /* RTP_PAYLOAD_RTSP */
    unsigned
char marker: 1 ;        /* expect 1 */
   
/* bytes 2, 3 */
    unsigned
short seq_no;           
   
/* bytes 4-7 */
    unsigned 
long timestamp;       
   
/* bytes 8-11 */
    unsigned
long ssrc;            /* stream number is used here. */
}
RTP_FIXED_HEADER;

typedef
struct   {
   
// byte 0
    unsigned char TR_high2: 2 ;    /* Temporal Reference high 2 bits */
    unsigned
char T: 1 ;            /* video specific head extension flag */
    unsigned
char MBZ: 5 ;        /* unused */
   
// byte1
    unsigned char TR_low8: 8 ;    /* Temporal Reference low 8 bits */
   
// byte3
    unsigned char P: 3 ;            /* picture type; 1=I,2=P,3=B,4=D */
    unsigned
char E: 1 ;         /* set if last byte of payload is slice end code */
    unsigned
char B: 1 ;            /* set if start of payload is slice start code */    
    unsigned
char S: 1 ;            /* sequence header present flag */
    unsigned
char N: 1 ;            /* N bit; used in MPEG 2 */
    unsigned
char AN: 1 ;        /* Active N bit */
   
// byte4
    unsigned char FFC: 3 ;        /* forward_f_code */
    unsigned
char FFV: 1 ;        /* full_pel_forward_vector */
    unsigned
char BFC: 3 ;        /* backward_f_code */
    unsigned
char FBV: 1 ;        /* full_pel_backward_vector */
}
MPEG_VID_SPECIFIC_HDR; /* 4 BYTES */


enum reading_status {
    SLICE_AGAIN,
    SLICE_BREAK,
    UNKNOWN,
    SLICE,
    SEQUENCE_HEADER,
    GROUP_START,
    PICTURE
    }
;

void validate_file();
float frame_rate( int buffer_index);
unsigned
int read_picture_type( int buffer_index);
unsigned
int read_FBV( int buffer_index);
unsigned
int read_BFC( int buffer_index);
unsigned
int read_FFV( int buffer_index);
unsigned
int read_FFC( int buffer_index);
unsigned
int extract_temporal_reference( int buffer_index);
unsigned
int find_next_start_code(unsigned int   * buffer_index);
void reset_buffer_index( void );
BOOL InitWinsock();

 

//MPEG2RTP.cpp
    // 这个程序主要用于RTP封装MPEG2数据的学习和测试,不作任何其它用途
// 软件在VS.net 2003中编译通过,但在linux下作小量修改也应编译通过。
// 通过VLC测试,VLC能正确接收和解码由本程序发送的TEST.MPV编码流。
//
// 作者:冯富秋 Tinnal
// 邮箱:tinnal@163.com


#include
" MPEG2RTP.h "

#pragma   comment(lib,
" Ws2_32 " )

unsigned
char             buf[MAX_RTP_PKT_LENGTH +   4 ]; // input buffer
enum reading_status        state = SEQUENCE_HEADER;
unsigned
int             g_index_in_packet_buffer = HEADER_LENGTH;
static unsigned long     g_time_stamp =   0 ;
static unsigned long     g_time_stamp_current = 0 ;
static   float             g_frame_rate =   0 ;
static unsigned int         g_delay_time =   0 ;
static unsigned int         g_timetramp_increment =   0 ;
FILE   
* mpfd;
SOCKET    socket1;
RTP_FIXED_HEADER       
* rtp_hdr;
MPEG_VID_SPECIFIC_HDR   
* mpeg_hdr;

#if 0
void Send_RTP_Packet(unsigned char   * buf, int bytes)
{

   
int i =   0 ;
   
int count =   0 ;

    printf(
" /nPacket length %d/n " ,bytes);
    printf(
" RTP Header: [M]:%s [sequence number]:0x%lx [timestamp]:0x%lx/n " ,
        rtp_hdr
-> marker ==   1 ? " TRUE " : " FALSE " ,
        rtp_hdr
-> seq_no,
        rtp_hdr
-> timestamp);
    printf(
" [TR]:%d [AN]:%d [N]:%d [Sequence Header]:%s /
        /n [Begin Slice]: % s [End Slice]: % s /
        /n [Pictute Type]:
% d /
        /n [FBV]:
% d [BFC]: % d [FFV]: % d [FFC]: % d/n " ,
        (mpeg_hdr -> TR_high2 <<   8   | mpeg_hdr -> TR_low8),
        mpeg_hdr
-> AN, mpeg_hdr -> N, mpeg_hdr -> S ==   1 ? " TRUE " : " FALSE " ,
        mpeg_hdr
-> B == 1 ? " TRUE " : " FALSE " , mpeg_hdr -> E == 1 ? " TRUE " : " FALSE " ,
        mpeg_hdr
-> P,
        mpeg_hdr
-> FBV, mpeg_hdr -> BFC, mpeg_hdr -> FFV, mpeg_hdr -> FFC);

   
while (bytes -- )
   
{
        printf(
" %02x " ,buf[count ++ ]);
       
if ( ++ i ==   16 )
       
{
            i
= 0 ;
            printf(
" /n " );
        }

    }

    printf(
" /n " );

}


#else

Send_RTP_Packet(unsigned
char   * buf, int bytes)
{
   
return send( socket1,  ( char * ) buf, bytes, 0 );
}


#endif


void main( int argc, char   * argv[])
{
    unsigned
int next_start_code;
    unsigned
int next_start_code_index;
    unsigned
int sent_bytes;
    unsigned
short seq_num = 0 ;
    unsigned
short stream_num =   10 ;
   
struct sockaddr_in server;
   
int len = sizeof (server);


#if 0
    mpfd
= fopen( " E://tinnal//live555//vc_proj//es//Debug//test.mpv " , " rb " ); 
#else
   
if (argc <   2 )
   
{
        printf(
" /nUSAGE: %s mpegfile/nExiting../n/n " ,argv[ 0 ]);
                exit(
0 );
    }

    mpfd
= fopen(argv[ 1 ], " rb " );
#endif



   
if (mpfd == NULL )
   
{
        printf(
" /nERROR: could not open input file %s/n/n " ,argv[ 1 ]);
        exit(
0 );
    }

    rtp_hdr
= (RTP_FIXED_HEADER * ) & buf[ 0 ];
    mpeg_hdr
= (MPEG_VID_SPECIFIC_HDR * ) & buf[ 12 ];

    memset((
void   * )rtp_hdr, 0 , 12 ); // zero-out the rtp fixed hdr
    memset(( void   * )mpeg_hdr, 0 , 4 ); // zero-out the video specific hdr
    memset(( void   * )buf, 0 ,MAX_RTP_PKT_LENGTH +   4 );

    InitWinsock();

    server.sin_family
= AF_INET;
    server.sin_port
= htons(DEST_PORT);          // server的监听端口
    server.sin_addr.s_addr = inet_addr(DEST_IP); // server的地址

    socket1
= socket(AF_INET,SOCK_DGRAM, 0 );
    connect(socket1, (
const sockaddr * ) & server, len) ;

   
// read the first packet from the mpeg file
   
// always read 4 extra bytes in (in case there's a startcode there)
   
// but dont send  more than MAX_RTP_PKT_LENGTH in one packet
    fread( & (buf[HEADER_LENGTH]), MAX_RTP_PKT_LENGTH - HEADER_LENGTH + 4 , 1 ,mpfd);

    validate_file();

   
do
   
{   

       
/* initialization of the two RTP headers */
        rtp_hdr
-> seq_no     = htons(seq_num ++ );
        rtp_hdr
-> payload     = MPV;
        rtp_hdr
-> version     =   2 ;
        rtp_hdr
-> marker    =   0 ;
        rtp_hdr
-> ssrc        = htonl(stream_num);   

        mpeg_hdr
-> S = mpeg_hdr -> E = mpeg_hdr -> B =   0 ;

       
do {
            next_start_code
= find_next_start_code( & next_start_code_index);


           
if ((next_start_code > 0x100 ) && (next_start_code < 0x1b0 ) )
           
{
               
// <! We reach the first slice start code in current packet buffer.
               
// <! Set the B flag of the mpeg special header
                if (state == SEQUENCE_HEADER
                   
|| state == GROUP_START
                   
|| state == PICTURE
                   
|| state == UNKNOWN)
               
{
                    state
= SLICE;
                    mpeg_hdr
-> B =   1 ;
                }

               
// <! We reach slice start code in current packet again.
               
// <! Set the E flag of the mpeg special header,
               
// <! and update the sent_bytes to the last slice data end.
                else   if (state == SLICE || state == SLICE_AGAIN)
               
{

                    state
= SLICE_AGAIN;
                    sent_bytes
= next_start_code_index;
                    mpeg_hdr
-> E     =   1 ;
                }

               
// <! We reach slice start code(the previous slice end)
               
// <! for a broken slice. set the E flag.
               
// <! According to RFC2550, we shouldn't put another slice data to this packet,
               
// <! instead of sent it out.
                else   if (state == SLICE_BREAK)
               
{
                    state
= UNKNOWN;
                    sent_bytes
= next_start_code_index;
                    mpeg_hdr
-> E     =   1 ;
                   
goto Sent_Packet;
                }


            }
 

           
switch (next_start_code)
           
{
           
case SEQUENCE_HEADER_CODE:
               
// <! SEQUENCE_HEADER_CODE after SLICE_START_CODE
               
// <! we must sent the packet now, so that, the SEQUENCE_HEADER_CODE
               
// <! will appear at the start of the next packet
                if (state == SLICE || state == SLICE_AGAIN)
               
{               
                    state
= SEQUENCE_HEADER;
                    sent_bytes
= next_start_code_index;
                   
// <! Accord to RFC 2550,
                   
// <! at the end of a frame we should set RTP marker bit to 1.
                    rtp_hdr -> marker =   1 ;
                   
goto Sent_Packet;
                }


                state
= SEQUENCE_HEADER;
                g_frame_rate
= frame_rate(next_start_code_index);
                g_delay_time
= (unsigned int )( 1000.0   / g_frame_rate + 0.5 ); // ms
                g_timetramp_increment = (unsigned int )( 90000.0   / g_frame_rate + 0.5 ); // 90K Hz
                mpeg_hdr -> S = 1 ;
               
break ;

           
case GROUP_START_CODE:
               
// <! GROUP_START_CODE after SLICE_START_CODE
               
// <! we must sent the packet now, so that, the GROUP_START_CODE
               
// <! will appear at the start of the next packet
                if (state == SLICE || state == SLICE_AGAIN)
               
{
                    state
= GROUP_START;
                    sent_bytes
= next_start_code_index;
                   
// <! Accord to RFC 2550,
                   
// <! at the end of a frame we should set RTP marker bit to 1.
                    rtp_hdr -> marker =   1 ;
                   
goto Sent_Packet;
                }
   

                state
= GROUP_START;

           
case PICTURE_START_CODE:
               
// <! PICTURE_START_CODE after PICTURE_START_CODE
               
// <! we must sent the packet now, so that, the PICTURE_START_CODE
               
// <! will appear at the start of the next packet
                if (state == SLICE || state == SLICE_AGAIN)
               
{
                    state
= PICTURE;
                    sent_bytes
= next_start_code_index;
                   
// <! Accord to RFC 2550,
                   
// <! at the end of a frame we should set RTP marker bit to 1.
                    rtp_hdr -> marker =   1 ;
                   
goto Sent_Packet;
                }


                state
= PICTURE;

                mpeg_hdr
-> TR_high2    = (extract_temporal_reference(next_start_code_index) &   0x300 ) >>   8 ;
                mpeg_hdr
-> TR_low8     =   extract_temporal_reference(next_start_code_index) &   0xff ;
                mpeg_hdr
-> P             = read_picture_type(next_start_code_index);
               
// now read the motion vectors information
                if ( (mpeg_hdr -> P == 2 ) || (mpeg_hdr -> P == 3 ))
               
{ // if B- or P-type picture, need forward mv
                    mpeg_hdr -> FFV = read_FFV(next_start_code_index);
                    mpeg_hdr
-> FFC = read_FFC(next_start_code_index);
                }

               
if ( mpeg_hdr -> P == 3 )
               
{ // if B-type pictue, need backward mv
                    mpeg_hdr -> FBV = read_FBV(next_start_code_index);
                    mpeg_hdr
-> BFC = read_BFC(next_start_code_index);
                }


               
// <! Time stamp only increate per frame.
               
// <! But I or P frame.
                if ( mpeg_hdr -> P ==   1   || mpeg_hdr -> P ==   2 ) {
                    g_time_stamp
+= g_timetramp_increment;
                    g_time_stamp_current
= g_time_stamp;
                }
else {
                    g_time_stamp
+= g_timetramp_increment;
                }

               

               
break ;

           
case PACKET_BUFFER_END:
               
// <! There is one more slice in the packet buffer
               
// <! Anyway, we only sent the integrated slice
                if (state == SLICE_AGAIN) {
                    state
= UNKNOWN;
                   
goto Sent_Packet;
                }


               
// <! There is one Slice in the packet buffer.
               
// <! But the Slice is to big, so we break the slice.
                if (state == SLICE)
               
{
                    state
= SLICE_BREAK;
                    sent_bytes
= next_start_code_index;
                   
goto Sent_Packet;
                }


               
// <! There if a broke slice, but in current packet buffer
               
// <! we could not find the end of the slice.
               
// <! Let it in the broke state.
                if (state == SLICE_BREAK )
               
{
                    state
= SLICE_BREAK;
                    sent_bytes
= next_start_code_index;
                   
goto Sent_Packet;
                }


               
break ;
            }

        }
while (next_start_code != PACKET_BUFFER_END);

Sent_Packet:
        rtp_hdr
-> timestamp = htonl(g_time_stamp_current);
        Send_RTP_Packet(buf, sent_bytes);
       
       
// copy the tail data to the head of the packet buffer
        memmove( & buf[HEADER_LENGTH], & buf[sent_bytes], MAX_RTP_PKT_LENGTH - sent_bytes);
       
// reset the buffer index to zero
        reset_buffer_index();
       
// reading data into buffer again
        fread( & (buf[(MAX_RTP_PKT_LENGTH - sent_bytes) + HEADER_LENGTH]), sent_bytes - HEADER_LENGTH , 1 ,mpfd);

       
// sleep g_delay_time msec for sending next picture data
        if (rtp_hdr -> marker == 1 ) Sleep( g_delay_time );

    }
while ( ! feof(mpfd));
    closesocket(socket1);
    fclose(mpfd);

    printf(
" stream end./n " );
}


// ==================================================================

unsigned
int find_next_start_code(unsigned int   * next_start_code_index) // NOTE: all start codes ARE byte-aligned
{
    unsigned
int byte0 = 0 ,byte1 = 0 ,byte2 = 0 ,byte3 = 0 ,startcode = 0 ;

   
// while not startcode and have not exceeded max packet length
    while (g_index_in_packet_buffer < MAX_RTP_PKT_LENGTH)
   
{
       
if (buf[g_index_in_packet_buffer + 0 ] ==   0
           
&& buf[g_index_in_packet_buffer + 1 ] ==   0
           
&& buf[g_index_in_packet_buffer + 2 ] == 1 )
       
{
           
// printf("FOUND startcode %d/n",indx);
            byte0 = ( int )buf[g_index_in_packet_buffer + 0 ];
            byte1
= ( int )buf[g_index_in_packet_buffer + 1 ];
            byte2
= ( int )buf[g_index_in_packet_buffer + 2 ];
            byte3
= ( int )buf[g_index_in_packet_buffer + 3 ];
            startcode
= (byte0 <<   24 ) + (byte1 <<   16 ) + (byte2 <<   8 ) + byte3;
           
* next_start_code_index = g_index_in_packet_buffer;
            g_index_in_packet_buffer
= g_index_in_packet_buffer + 4 ;
           
return (startcode);
        }

       
else
            g_index_in_packet_buffer
++ ;
    }


   
// <! reach the end of the packet buffer
    if (g_index_in_packet_buffer >= (MAX_RTP_PKT_LENGTH))
   
{
       
* next_start_code_index = g_index_in_packet_buffer - 1 ;
        g_index_in_packet_buffer
= HEADER_LENGTH;
       
return PACKET_BUFFER_END;
    }


    printf(
" Error reading buffer../n " );
    exit(
- 1 );
   
return   - 1 ;
}


void reset_buffer_index( void )
{
    g_index_in_packet_buffer
= HEADER_LENGTH;
}




// ========================================================
float frame_rate( int buffer_index)
{
    unsigned
char frame_rate_code;
    frame_rate_code
= (unsigned char )buf[buffer_index + 7 ] &   0xf ;
   
switch (frame_rate_code)
   
{
   
case   0x1 :
       
return   23.976 ;
   
case   0x2 :
       
return   24.0 ;
   
case   0x3 :
       
return   25.0 ;
   
case   0x4 :
       
return   29.97 ;
   
case   0x5 :
       
return   30.0 ;
   
case   0x6 :
       
return   50.0 ;
   
case   0x7 :
       
return   59.94 ;
   
case   0x8 :
       
return   60.0 ;
   
default :
       
return   0 ;
    }

}

// ========================================================
unsigned int extract_temporal_reference( int buffer_index) // 10 bits
{
    unsigned
int low2bits = 0 ,TR = 0 ; // TR = temporal reference;

    TR
= (unsigned int ) (buf[buffer_index + 4 ]);
    TR
<<=   2 ;
    low2bits
= (unsigned int ) (buf[buffer_index + 5 ]);
    TR
|= (low2bits >>   6 );
   
return (TR);
}


// ========================================================

unsigned
int read_picture_type( int buffer_index)
{
    unsigned
int pictype = 0 ;

    pictype
= (unsigned int ) buf[buffer_index + 5 ];
    pictype
= (pictype >>   3 ) & ( 0x7 );
   
return (pictype);
}


// =======================================================
unsigned int read_FFV( int buffer_index) // 1 bit
{
   
return ( ( int ) ((buf[buffer_index + 7 ] & ( 0x4 )) >>   2 ));
}

// =======================================================
unsigned int read_FFC( int buffer_index) // 3 bits
{
    unsigned
int FFC = 0 ,lowbit = 0 ;
    FFC
= ( int ) (buf[buffer_index + 7 ] & ( 0x3 ));
    FFC
<<=   1 ;
    lowbit
= ( int ) ((buf[buffer_index + 8 ]) & ( 0x80 ));
    FFC
= FFC | (lowbit >>   7 );
   
return (FFC);
}


// =======================================================
unsigned int read_FBV( int buffer_index) // 1 bit
{      
   
return ( ( int ) ((buf[buffer_index + 8 ] & ( 0x40 )) >> 6 ) );
}


// =======================================================
unsigned int read_BFC( int buffer_index) // 3 bits
{               
   
return ( ( int ) ( (buf[buffer_index + 8 ] & ( 0x38 ) ) >>   3 ) );
}


void validate_file()
{
   
/* to validate the file, ensure the existance of a startcode */
   
int j = 0 ,valid = 0 ;

   
while ((j ++< MAX_RTP_PKT_LENGTH) && ( ! valid))
   
{
       
if ( ! (( int )buf[j + 0 ] + ( int )buf[j + 1 ]) && ((( int )buf[j + 2 ]) == 1 ))
            valid
= 1 ;
    }

   
if ( ! valid)
   
{
        printf(
" /nERROR: start code not found. /
               /nInput file must be a valid MPEG I file./n " );
        exit( 0 );
    }
          
}


BOOL InitWinsock()
{
   
int Error;
    WORD VersionRequested;
    WSADATA WsaData;
    VersionRequested
= MAKEWORD( 2 , 2 );
    Error
= WSAStartup(VersionRequested, & WsaData); // 启动WinSock2
    if (Error != 0 )
   
{
       
return FALSE;
    }

   
else
   
{
       
if (LOBYTE(WsaData.wVersion) != 2 || HIBYTE(WsaData.wHighVersion) != 2 )
       
{
            WSACleanup();
           
return FALSE;
        }

       
    }

   
return TRUE;
}

 

      完成这个测试程序后,我有了很大的信心,又重复看了RFC3550几编,其实,如果你真看了程序,你发现我只发送了RTP,并没有发送RTCP数据包,因此,我们是不能同步多个RTP流的。我没去编码下去,因为我觉得已经够了。这里强调,没用说的RTP没有了RTCP就不行!接下来的工作,就是把这个程序的下层发包函数去掉,采用RTP库JRTPLIB,我觉得这才应该是JRTPLIB的DEMO!如果有人问,就这样的一个程序就能完成任务了,要 JRTPLIB干嘛,其实,我不写RTCP相关代码的原因为多个:

    1.RTCP里头有很多关于RTCP发送简隔的时间计算,RTP信息的统计,这种操作不是难,而是烦,我不想去写
    2.RTCP和RTP一开始出来的时候并不是因为视频的点播等应用的,而是视频会议。RTCP有管理与会者的层面含义,这一功能在很多场合并不会用到。
    3.我想简单,没有写多个流间的同步,如一个影片的视频和音频流。这些其实是RTCP来完成的。

    我懒得去写,因为这些功作RTP的各个库类都做得很好。我觉得用库的最大优点就在这吧。

抱歉!评论已关闭.