现在的位置: 首页 > 综合 > 正文

Java线程安全

2018年04月28日 ⁄ 综合 ⁄ 共 7122字 ⁄ 字号 评论关闭

转载自:

http://www.iteye.com/topic/875420

我之前写过一篇谈DCL的文章,最近又收到一个问题,本想直接回复,但我又不想再看原来写的文章,那些顺序分析其实很绕。这次我不会直接分析顺序,而是从基础概念讲起,希望大家能看得轻松一些。

如果你搜索网上分析dcl为什么在java中失效的原因,都会谈到编译器会做优化云云,我相信大家看到这个一定会觉得很沮丧、很无助,对自己写的程序很没信心。我很理解这种感受,因为我也经历过,这或许是为什么网上一直有人喜欢谈dcl的原因。如果放在java5之前,从编译器的角度去解释dcl也无可厚非,在java5的JMM(内存模型)已经得到很大的修正,如果到现在还只能从编译器的角度去解释dcl,那简直就在污辱java,要知道java的最大优势就是只需要考虑一个平台。你可以完全无视网上绝大多数关于dcl的讨论,很多时候他们自己都说不清楚,除Doug
Lea等几个大牛,我不相信谁比谁更权威。

很多人不理解dcl,不是dcl有多么复杂,恰恰相反,而是对基础掌握得不够。所以,我会先从基础讲起,然后再分析DCL。

我们都知道,当两个线程同时读写(或同时写)一个共享变量时会发生数据竞争。那我怎么才能知道发生了数据竞争呢?我需要去读取那个变量,发生数据竞争通常有两个表现:一是读取到陈旧数据,即读取到虽是曾经写入的数据,但不是最新的。二是读取到之前根本没有写入的值,也就是说读到垃圾。

数据陈旧性

为了读取到另一个线程写入的最新数据,JMM定义了一系列的规则,最基本的规则就是要利用同步。在Java中,同步的手段有synchronized和volatile两种,这里我只会涉及到syncrhonized。请大家先记住以下规则,接下来我会细讲。

规则一:必须对变量的所有写和所有读同步,才能读取到该最新的数据。

先看下面的代码:

Java代码
  1. public class A { 
  2.     private int some; 
  3.     public int another; 
  4.  
  5.     public int getSome() {
    return some; } 
  6.     public synchronized
    int getSomeWithSync() { return some; } 
  7.     public void setSome(int v) { some = v; } 
  8.     public synchronized
    void setSomeWithSync(int v) { some = v; } 

让我们来分析一个线程写,另一个线程读的情形,一共四种情形。初始情况都是a = new A(),暂不考虑其它线程。

情形一:读写都不同步。

Thread1 Thread2
(1) a.setSome(13)  
  (2) a.getSome()

这种情况下,即使thread1先写入some为13,thread2再读取some,它能读到13吗?在没有同步协调下,结果是不确定的。从图上看出,两个线程独立运行,JMM并不保证一个线程能够看到另一个线程写入的值。在这个例子中,就是thread2可能读到0(即some的初始值)而不是13。注意,在理论上,即使thread2在thread1写入some之后再等上一万年也还是可能读到some的初始值0,尽管这在实际几乎不可能发生。

情形二:写同步,读不同步

Thread1 Thread2
(1) a.setSomeWithSync(13)  
  (2) a.getSome()

情形三:读同步,写不同步

Thread1 Thread2
(1) a.setSome(13)  
  (2) a.getSomeWithSync()

在这两种情况下,thread1和thread2只对读或只对写some加了锁,这不起任何作用,和[情形一]一样,thread2仍有可能读到some的初始值0。从图上也可看出,thread1和thread2互相之间并没有任何影响,一方加锁并不影响另一方的继续运行。图中也显示,同步操作相当于在同步开始执行lock操作,在同步结束时执行unlock操作。

情形四:读写都同步

Thread1 Thread2
(1) a.setSomeWithSync(13)  
  (2) a.getSomeWithSync()

在情形四中,thread1写入some时,thread2等待thread1写入完成,并且它能看到thread1对some做的修改,这时thread2保证能读到13。实际上,thread2不仅能看到thread1对some的修改,而且还能看到thread1在修改some之前所做的任何修改。说得更精确一些,就是一个线程的lock操作能看见另一线程对同一个对象unlock操作之前的所有修改,请注意图中的红色箭头。 沿着图中箭头指示方向,箭头结尾处总能看到箭头开始处操作做的修改。这样,a.some[thread2]能看见lock[thread2],lock[thread2]能看见unlock[thread1],unlock[thread1]又能看见a.some=13[thread1],即能看到some的值为13。

再来看一个稍微复杂一点的例子:

例子五

Thread1 Thread2
(1) a.another = 5  
(2) a.setSomeWithSync(13)  
  (3) a.getSomeWithSync()
(4) a.another = 7  
  (5) a.another

thread2最后会读到another的什么值呢?会不会读到another的初始值0呢,毕竟所有对another的访问都没有同步?不会。从图中很清晰地可以看出,thread2的another至少到看到thread1在lock之前写入的5,却并不能保证它能看到thread1在unlock写入的7。因此,thread2可以什么读到another的值可能5或7,但不会是0。你或许已经发现,如果去掉图中thread2读取a.some的操作,这时相当于一个空的同步块,对结论并没有任何影响。这说明空的同步块是起作用的,编译器不能擅自将空的同步块优化掉,但你在使用空的同步块应该特别小心,通常它都不是你想要的结果。另外需要注意,unlock操作和lock操作必须针对同一个对象,才能保证unlock操作能看到lock操作之前所做的修改。

例子六:不同的锁

Java代码
  1. class B { 
  2.     private Object lock1 = new Object(); 
  3.     private Object lock2 = new Object(); 
  4.  
  5.     private int some; 
  6.  
  7.     public int getSome() { 
  8.         synchronized(lock1) {
    return some; } 
  9.     } 
  10.  
  11.     public void setSome(int v) { 
  12.         synchronized(lock2) { some = v; } 
  13.     } 

Thread1 Thread2
(1) b.setSome(13)  
  (2) b.getSome()

在这种情况下,虽然getSome和setSome都加了锁,但由于它们是不同的锁,一个线程运行时并不能阻塞另一个线程运行。因此这里的情形和情形一、二、三一样,thread2不保证读到thread1写入的some最新值。

现在来看DCL:

例子七: DCL

Java代码
  1. public class LazySingleton { 
  2.     private int someField; 
  3.      
  4.     private static LazySingleton instance; 
  5.      
  6.     private LazySingleton() { 
  7.         this.someField = 201;                                
    // (1) 
  8.     } 
  9.      
  10.     public static LazySingleton getInstance() { 
  11.         if (instance == null) {                              
    // (2) 
  12.             synchronized(LazySingleton.class) {              
    // (3) 
  13.                 if (instance ==
    null) {                       // (4) 
  14.                     instance = new LazySingleton();          
    // (5) 
  15.                 } 
  16.             } 
  17.         } 
  18.         return instance;                                     
    // (6) 
  19.     } 
  20.      
  21.     public int getSomeField() { 
  22.         return this.someField;                               
    // (7) 
  23.     } 

假设thread1先调用getInstance(),由于此时还没有任何线程创建LazySingleton实例,它会创建一个实例s并返回。这是thread2再调用getInstance(),当它运行到(2)处,由于这时读instance没有同步,它有可能读到s或者null(参考情形二)。先考虑它读到s的情形,画出流程图就是下面这样的:

由于thread2已经读到s,所以getInstance()会立即返回s,这是没有任何问题,但当它读取s.someFiled时问题就发生了。 从图中可以看thread2没有任何同步,所以它可能看不到thread1写入someField的值20,对thread2来说,它可能读到s.someField为0,这就是DCL的根本问题。从上面的分析也可以看出,为什么试图修正DCL但又希望完全避免同步的方法几乎总是行不通的。

接下来考虑thread2在(2)处读到instance为null的情形,画出流程图:

接下来thread2会在有锁的情况下读取instance的值,这时它保证能读到s,理由参考情形四或者通过图中箭头指示方向来判定。

关于DCL就说这么多,留下两个问题:

  1. 接着考虑thread2在(2)读到instance为null的情形,它接着调用s.someFiled会得到什么?会得到0吗?
  2. DCL为什么要double check,能不能去掉(4)处的check?若不能,为什么?

原子性
回到情形一,为什么我们说thread2读到some的值只可能为为0或13,而不可能为其它?这是由java对int、引用读写都是原子性所决定的。所谓“原子性”,就是不可分割的最小单元,有数据库事务概念的同学们应该对此容易理解。当调用some=13时,要么就写入成功要么就写入失败,不可能写入一半。但是,java对double, long的读写却不是原子操作,这意味着可能发生某些极端意外的情况。看例子:

Java代码
  1. public class C { 
  2.     private /* volatile */
    long x;                          
    // (1) 
  3.  
  4.     public void setX(long v) { x = v; } 
  5.     public long getX() {
    return x; } 

Thread1 Thread2
(1) c.setX(0x1122334400112233L)  
  (2) c.getX()

thread2读取x的值可能为0,1122334400112233外,还可能为别的完全意想不到的值。一种情况假设jvm对long的写入是先写低4字节,再写高4字节,那么读取到x的值还可能为112233。但是我们不对jvm做如此假设,为了保证对long或double的读写是原子操作,有两种方式,一是使用volatile,二是使用synchronized。对上面的例子,如果取消(1)处的volatile注释,将能保证thread2读取到x的值要么为0,要么为1122334400112233。如果使用同步,则必须像下面这样对getX,setX都同步:

Java代码
  1. public class C { 
  2.     private /* volatile */
    long x;                          
    // (1) 
  3.  
  4.     public synchronized
    void setX(long v) { x = v; } 
  5.     public synchronized
    long getX() { return x; } 

因此对原子性也有规则(volatile其实也是一种同步)。

规则二:对double, long变量,只有对所有读写都同步,才能保证它的原子性

有时候我们需要保证一个复合操作的原子性,这时就只能使用synchronized。

Java代码
复制代码

收藏代码
  1. public class Canvas { 
  2.     private int curX, curY; 
  3.  
  4.     public /* synchronized */ getPos() { 
  5.         return new
    int[] { curX, curY }; 
  6.          
  7.     } 
  8.  
  9.     public /* synchronized */
    void moveTo(int x,
    int y) { 
  10.         curX = x; 
  11.         curY = y; 
  12.     } 

Thread1 Thread2
(1) c.moveTo(1, 1)  
(2) c.moveTo(2, 2)  
  (3) c.getPos()

当没有同步的情况下,thread2的getPos可能会得到[1, 2], 尽管该点可能从来没有出现过。之所以会出现这样的结果,是因为thread2在调用getPos()时,curX有0,1或2三种可能,同样curY也有0,1或2三种可能,所以getPos()可能返回[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]共九种可能。要避免这种情况,只有将getPos()和moveTo都设为同步方法。

总结
以上分析了数据竞争的两种症状,陈旧数据和非原子操作,都是由于没有恰当同步引起的。这些其实都是相当基础的知识,同步可有两种效果:一是保证读取最新数据,二是保证操作原子性,但是大多数书籍都对后者过份强调,对前者认识不足,以致对多线程的认识上存在很多误区。如果想要掌握java线程高级知识,我只推荐《Java并发编程设计原则与模式》。其实我已经好久没有写Java了,这些东西都是我两年前的知识,如果存在问题,欢迎大家指出,千万不要客气。

抱歉!评论已关闭.