现在的位置: 首页 > 综合 > 正文

linx 线程切换的一些感悟

2019年04月21日 ⁄ 综合 ⁄ 共 4035字 ⁄ 字号 评论关闭

        上次对函数调用进行了一定的剖析,这次课程带领我了解了linux进程切换的一些操作,做如下笔记:      

        “张涛 + 原创作品转载请注明出处 + 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ”(课程要求)

        

/*
 *  linux/mykernel/mypcb.h
 *
 *  Kernel internal PCB types
 *
 *  Copyright (C) 2013  Mengning
 *
 */

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*8

/* CPU-specific state of this task */
struct Thread {
    unsigned long		ip;
    unsigned long		sp;
};

typedef struct PCB{
    int pid;<span style="white-space:pre">					</span>//线程id
    volatile long state;	<span style="white-space:pre">		</span>//线程状态
    char stack[KERNEL_STACK_SIZE];<span style="white-space:pre">		</span>//线程栈    
    struct Thread thread;<span style="white-space:pre">			</span>//线程结构,主要存储栈指针和执行的起始指针
    unsigned long	task_entry;<span style="white-space:pre">		</span>//形成的链表的起始指针(由于为单链表,此指针为必须的)
    struct PCB *next;<span style="white-space:pre">				</span>//通过next指针行程一个线程的单链表
}tPCB;

void my_schedule(void);

        首先介绍下头文件:头文件主要定义了使用到的线程使用到的一些结构进行了打包。

        下面看初始化函数:

extern tPCB task[MAX_TASK_NUM];
void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];/*由于栈是想低地址增长的,故初始化sp为数组最后一个元素的地址,栈空间可以在定义中看到为8k*/
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = -1;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;<span style="white-space:pre">		</span>//使用数组作为存储结构,对栈指针进行适配
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
	asm volatile(
    	"movl %1,%%esp\n\t" 	/* set task[pid].thread.sp to esp */
    	"pushl %1\n\t" 	        /* push ebp */<span style="white-space:pre">				</span>   //其实就是帧指针进栈,因为此时刚开始,帧栈指针指向的地址相同。
    	"pushl %0\n\t" 	        /* push task[pid].thread.ip */
    	"ret\n\t" 	            /* pop task[pid].thread.ip to eip */   //觉得不采用jump的原因是由于长跳转与近跳转的原因
    	"popl %%ebp\n\t"
    	: 
    	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
	);
}   

        下面就是线程的执行函数,即task_entry,这里设置每个线程函数均为my_process

void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
        	    my_schedule(); //进行线程调度
        	}
        	printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}

void my_timer_handler(void)
{
#if 1
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;  //触发<span style="font-family: Arial, Helvetica, sans-serif;">my_process进行线程调度</span>

    } 
    time_count ++ ;  
#endif
    return;  	
}

        最核心的为线程调度代码:

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
    	return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;   //获取当前和即将运行的线程结构
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
    	/* switch to next process */
    	asm volatile(	
        	"pushl %%ebp\n\t" 	    /* save ebp */
        	"movl %%esp,%0\n\t" 	/* save esp */
        	"movl %2,%%esp\n\t"     /* restore  esp */
        	"movl $1f,%1\n\t"       /* save eip */	
        	"pushl %3\n\t" 
        	"ret\n\t" 	            /* restore  eip */  //通过ret进指令跳转,因为之前已经将需要跳转的ip压栈,不通过跳转指令,应该是考虑到长跳转之类的
        	"1:\t"                  /* next process start here */  <span style="color:#ff0000;">//这里添加了下一条执行指令的标号,但运行未运行过的线程中没有这个标号不知道为什么?</span>
        	"popl %%ebp\n\t"
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)  
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	); 
    	my_current_task = next; 
    	printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  <span style="color:#ff0000;">//举得这里其实应该是从next跳转回prev的过程?因为此时次线程已经运行并退出了,受讨论的启发,觉得他说的很有道理</span>
    }
    else
    {
        next->state = 0;
        my_current_task = next;
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
    	/* switch to new process */
    	asm volatile(	
        	"pushl %%ebp\n\t" 	    /* save ebp */
        	"movl %%esp,%0\n\t" 	/* save esp */
        	"movl %2,%%esp\n\t"     /* restore  esp */
        	"movl %2,%%ebp\n\t"     /* restore  ebp */
        	"movl $1f,%1\n\t"       /* save eip */	<span style="color:#ff0000;">//这里也有两点存疑:1.如上面说的,这里未定义标号1;2.push了ebp却未pop?</span>
        	"pushl %3\n\t" 
        	"ret\n\t" 	            /* restore  eip */
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	);          
    }   
    return;	
}

        总之,通过此次课的学习,对1.进程的切换时的保存现场;2.程序指针的跳转均有了一定了了解,收获颇丰。

        有点遗憾,还没有付上实验楼的截图,因为本地网络比较差,本地搭建环境qemu一直无法获取;实验楼编译后也有些问题,网络好些进行补上。

抱歉!评论已关闭.