现在的位置: 首页 > 综合 > 正文

Map Projections and Coordinate Systems(转)

2012年11月08日 ⁄ 综合 ⁄ 共 9818字 ⁄ 字号 评论关闭
文章目录

From http://maps.unomaha.edu:16080/Peterson/gis/notes/MapProjCoord.html


Outline

  1. Map Projections
  • Basic Principles

    • Earth’s Shape and Vertical Datums
    • Geographic Coordinate System (latitude and longitude)
    • Map Projections Defined
    • Types of Projections.
      • Azimuthal
      • Cylindrical
      • Conic
      • Mathematical
    • Projection distance, area and shape
      • Equal Area
      • Conformal
      • Distance
      • Compromise
    • Common GIS Projections
      • Mercator
      • Lambert Conformal Conic
      • State Plane
      • Lambert Equal Area
  1. Coordinate Systems
  • General
  • State Plane Coordinates
    • Every State has at least one
    • Based on origins identified by each state
    • Identified on US Quadrangle maps
    • Universal Transverse Mercator
      • Transverse (uses longitude as standard line) cylindrical projection
      • 60 Zones
    • United States Public Land Survey System
  1. GIS Capabilities
  • Basic Concepts
  • Selecting the proper projection
  1. Questions



1. Map Projections

Basic Principles

  • Although for many mapping applications the earth
    can be assumed to be a perfect sphere, there is a difference between the distance around the earth between the poles versus the
    equator.  The circumference of the earth
    is about 1/300th smaller around the poles. This type of figure is termed an
    oblate ellipsoid or spheroid, and is the three-dimensional shape obtained by
    rotating an ellipse about its shorter axis. An estimate of the earth’s surface
    based on an ellipsoid provides a determination of the elevation of every point
    on the earth’s surface, including sea level, and is often called a datum. Over
    time, and in different countries, many datums have
    been developed and used. With more accurate means of measurement today (i.e.
    satellite and GPS), recent datums are referenced from
    the center of the earth rather than a theoretical surface.  The resulting North American Datum of 1983
    (NAD83)and the slightly refined World Geodetic System (WGS84), from the U.S.
    Military in 1984, are internationally accepted as the geodetic reference system
    (GRS 80).
  • Geographic Coordinates simply refers to the
    system of latitude and longitude. This coordinate system is formed by creating
    a grid using the equator as 0 degrees and forming parallels of latitude to the
    north and south (90 degrees N is the North Pole, 90 degrees S is the South
    Pole), and meridians of longitude east and west (which meet at 180 degrees,
    commonly called the International Date Line) of the "Prime Meridian"
    which passes through Greenwich, England.
  • Map projections are used to transfer or
    “project” geographical coordinates onto a flat surface.

 

 

The easiest way to try to transfer the information onto a flat
surface is to convert the geographic coordinates into an X and Y coordinate
system, where x is longitude and y is latitude. This is an example of
“projecting” onto a plane.  Coordinates
can also be "projected" onto two other flat surfaces, a cylinder or
cone, and then unfolded into a map. The grid formed by the latitude and
longitude on a map is called the graticule.  There are thousands of different map
projections all depending on how they intersect earth’s surface and how they
are oriented.  For example, the line of
latitude or longitude where a projection intersects or “cuts” the earth’s
surface is called the point of contact, or standard line, where distortion is
minimized.  Orientations of the three
shapes can also vary between equatorial (standard lines of latitude),
transverse (standard lines of longitude), and oblique (standard line other than
latitude or longitude).  In addition,
each projection effects the distance, area, and angle
relationships of the earth surface as portrayed on the map. Ideally, these
factors would be consistent to the relationships on the real earth.
Unfortunately, some relationships are always distorted.

Types of Projections

  • An azimuthal or planar
    projection is usually tangent to a specific point on earth’s
    surface, but may also be secant. This point, or focus, may be a pole, the
    equator, or other oblique point. 
    Normally though, the azimuthal projection is
    used for polar charts due to distortion at other latitudes.

  • A cylindrical projection usually places the
    earth inside a cylinder with the equator tangent or secant to the inside of the
    cylinder.  If the cylinder is placed
    perpendicular to the axis of the earth, the resulting projection is called a
    transverse projection.

 

 

 

  • In a conic projection, a cone is placed over the
    earth, normally tangent to one or more lines of latitude. This tangent line is
    called a standard parallel and, in general, distortion increases the further
    away you get from this line.  A conic projection
    works best over mid latitudes for this reason.
  • Mathematical map projections are not based on
    developable surface, but often specify a direct mathematical projection from a
    spheroid onto a flat surface.  These types
    of map projections can change for different parts or regions of the world in
    order to reduce certain distortions. 
    They can also be formed by merging other projections in order to get the
    “best” of each.

Projection Distance, Area, and Shape

  • Equal area projections preserve the property of
    area. On an equivalent projection all parts of the earth's surface are shown
    with the correct area. However, latitudinal distances are never accurate.

  • Conformal projections preserve right angles
    between lines of latitude and longitude and are primarily used because they
    preserve direction. Area is always distorted on conformal maps. Because of
    GIS’s emphasis on cartographic shapes, GIS systems often use conformal
    projections.

  • Some projections only preserve correct distance
    relationships along a few lines on the map. For example, an Equidistant
    azimuthal projection has the distance to the outside
    of the map portrayed correctly. These are seldom used in GIS.

  • A final category is compromise maps. They may be
    the average of two or more projections or interrupted or broken in order to
    minimize certain distortions.

Common GIS Projections

  • Mercator- A conformal,
    cylindrical projection tangent to the equator. 
    Originally created to display accurate
    compass bearings for sea travel. An additional feature of this projection is
    that all local shapes are accurate and clearly defined.

 

  • Transverse Mercator - Similar to the Mercator
    except that the cylinder is tangent along a meridian instead of the equator. The
    result is a conformal projection that minimizes distortion along a north-south
    line, but does not maintain true directions.

 

  • Universal Transverse Mercator (UTM) – Based on a Transverse Mercator
    projection centered in the middle of zones that are 6 degrees in longitude
    wide.  These zones have been created
    throughout the world.

 

  • Lambert Conformal
    Conic – A conic, confromal projection typically
    intersecting parallels of latitude, standard parallels, in the northern
    hemisphere.  This projection is one of
    the best for middle latitudes because distortion is lowest in the band between
    the standard parallels. It is similar to the Albers Conic Equal Area projection
    except that the Lambert Conformal Conic projection portrays shape more
    accurately than area.

 

  • State Plane – A
    standard set of projections for the

    United States

    • based on either the Lambert Conformal Conic or
      transverse mercator
      projection, depending on the orientation of each state.  Large states commonly require several state
      plane zones.

 

  • Lambert Equal Area - An equidistant, conic
    projection similar to the Lambert Conformal Conic that preserves areas.

  • Albers Equal Area
    Conic - This conic projection uses two standard parallels to reduce some of the
    distortion of a projection with one standard parallel. Shape and linear scale
    distortion are minimized between standard parallels.

 

 

 

 


2. Coordinate Systems

General.

As described under map projections, traditional coordinate
systems are based on a flat coordinate system. They are almost always a
positive quadrant coordinate system, and are easier to develop and use over a
small area. Recently, with improvements in computer processing capabilities,
GIS and GPS systems are migrating toward using the spherical coordinate system
of longitude and latitude.

State Plane Coordinate System (SPCS).

  • The SPCS is primarily used in engineering
    applications by utility companies and local governments for doing accurate
    surveys. The SPCS is based on Transverse Mercator or
    Lambert Conformal conic projections with units in feet. States that elongate
    north to south normally use the Lambert Conformal. Those that are elongated
    east to west normally use the Transverse Mercator.

  • Every State has at least one SPCS zone, some as many
    as five. Because they are so localized and tailored for the specific geographic
    area, distortion is very small.

 

  • Nebraskahas two zones. There are between 100 and 150 zones in the US.

 

  • Each zone is based on origins identified by each
    state. Each zone will have its on origin identified by some given number west
    and south of the south-western-most corner of the map. This means that
    positional numbers from the origin are expressed in positive terms. Normally
    locations are expressed in feet east and north of the origin. This can become
    difficult when areas may need to be identified across two zones.

  • SPCS is identified on US Quadrangle maps by
    black graticule marks.

Universal Transverse Mercator
(UTM).

  • The UTM coordinate system is commonly used in
    GIS for larger scale areas within a certain UTM zone. The UTM projection is
    formed by using a transverse cylindrical projection, i.e., the standard line
    runs along a meridian of longitude. The effect is to minimize distortion in a
    narrow strip running pole to pole.

  • UTM divides the earth into pole-to-pole zones 6
    degrees of longitude wide. The first zone starts at the International Date Line
    (180 degrees east) and the last zone, 60, starts at 174 degrees east. Northings are determined separately for the areas north and
    south of the equator. Because distortion becomes extreme at northern latitudes,
    UTM is not normally used above 80 degrees North or South.

 

United States Public Land Survey System.

The US Public Land Survey System is a grid
system based on a set of selected meridians, termed "principal
meridians," and parallels, called "baselines." Distances are
measured in the four cardinal directions from the initial point and are formed
into townships, ranges, and sections. This system is primarily used for legal
land description west of Ohio.


3. GIS Capabilities

Basic Concepts.

All GIS systems must be capable of converting projections
and converting coordinates. This involves a lot of computer programming and
computational power. At a minimum, a GIS must be able to convert digitized
coordinates to latitude and longitude and reproject
them on to a flat surface.

Selecting the proper projection.

In order to select the correct projection to use, we must analyze the object
of our project. A projection should be selected which has a standard line which
is centered on the area of focus. You must also determine if correct depiction
of area, angle relationships, or distance accuracy is important. Distance may
be especially difficult if correct depiction is required over a large area.


4. Questions for Map Projections, Coordinate Systems, and GIS Capabilities

  1. Describe the difference between a sphere and spheriod.
  2. Describe the four basic types of projections. When is
    each type normally used?
  3. Name an example of a conformal, equal area, and
    compromise map.
  4. Describe the State Plane Coordinate System using Nebraska
    as an example.
  5. Why is the UTM system not used North or South of 80
    degrees latitude?
  6. Explain the key elements in selecting a projection to
    use in a GIS project.

Submitted by Dave Gay on
16 February 98.

Updated by Paul Woodward on December 6, 2004

抱歉!评论已关闭.