现在的位置: 首页 > 综合 > 正文

tcpdump命令详解

2012年10月30日 ⁄ 综合 ⁄ 共 10316字 ⁄ 字号 评论关闭

简介

网络抓包工具。用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。

实用命令实例

默认启动

普通情况下,直接启动tcpdump将监视第一个网络接口上所有流过的数据包。

tcpdump

监视指定网络接口的数据包

tcpdump -i eth1

如果不指定网卡,默认tcpdump只会监视第一个网络接口,一般是eth0,下面的例子都没有指定网络接口。 

监视指定主机的数据包

打印所有进入或离开主机为sundown的数据包.

tcpdump host sundown

也可以指定ip,例如截获所有210.27.48.1 的主机收到的和发出的所有的数据包

tcpdump host 210.27.48.1 

打印helios 与 hot 或者与 ace 之间通信的数据包

tcpdump host helios and \( hot or ace \)

截获主机210.27.48.1 和主机210.27.48.2 210.27.48.3的通信

tcpdump host 210.27.48.1 and \ (210.27.48.2 or 210.27.48.3 \) 

打印ace与任何其他主机之间通信的IP 数据包, 但不包括与helios之间的数据包.

tcpdump ip host ace and not helios

如果想要获取主机210.27.48.1除了和主机210.27.48.2之外所有主机通信的ip包,使用命令:

tcpdump ip host 210.27.48.1 and ! 210.27.48.2

截获主机hostname发送的所有数据

tcpdump -i eth0 src host hostname

监视所有送到主机hostname的数据包

tcpdump -i eth0 dst host hostname

监视指定主机和端口的数据包

如果想要获取主机210.27.48.1接收或发出的telnet包,使用如下命令

tcpdump tcp port 23 host 210.27.48.1

对本机的udp 123 端口进行监视 123 ntp的服务端口

tcpdump udp port 123 

 

输出信息含义

首先我们注意一下,基本上tcpdump总的的输出格式为:系统时间 来源主机.端口 > 目标主机.端口 数据包参数

tcpdump 的输出格式与协议有关.以下简要描述了大部分常用的格式及相关例子.

链路层头

对于FDDI网络, '-e' 使tcpdump打印出指定数据包的'frame control' 域, 源和目的地址, 以及包的长度.(frame control域
控制对包中其他域的解析). 一般的包(比如那些IP datagrams)都是带有'async'(异步标志)的数据包,并且有取值0到7的优先级;
比如 'async4'就代表此包为异步数据包,并且优先级别为4. 通常认为,这些包们会内含一个 LLC包(逻辑链路控制包); 这时,如果此包
不是一个ISO datagram或所谓的SNAP包,其LLC头部将会被打印(nt:应该是指此包内含的 LLC包的包头).

对于Token Ring网络(令牌环网络), '-e' 使tcpdump打印出指定数据包的'frame control'和'access control'域, 以及源和目的地址,
外加包的长度. 与FDDI网络类似, 此数据包通常内含LLC数据包. 不管 是否有'-e'选项.对于此网络上的'source-routed'类型数据包(nt:
意译为:源地址被追踪的数据包,具体含义未知,需补充), 其包的源路由信息总会被打印.


对于802.11网络(WLAN,即wireless local area network), '-e' 使tcpdump打印出指定数据包的'frame control域,
包头中包含的所有地址, 以及包的长度.与FDDI网络类似, 此数据包通常内含LLC数据包.

(注意: 以下的描述会假设你熟悉SLIP压缩算法 (nt:SLIP为Serial Line Internet Protocol.), 这个算法可以在
RFC-1144中找到相关的蛛丝马迹.)

对于SLIP网络(nt:SLIP links, 可理解为一个网络, 即通过串行线路建立的连接, 而一个简单的连接也可看成一个网络),
数据包的'direction indicator'('方向指示标志')("I"表示入, "O"表示出), 类型以及压缩信息将会被打印. 包类型会被首先打印.

类型分为ip, utcp以及ctcp(nt:未知, 需补充). 对于ip包,连接信息将不被打印(nt:SLIP连接上,ip包的连接信息可能无用或没有定义.
reconfirm).对于TCP数据包, 连接标识紧接着类型表示被打印. 如果此包被压缩, 其被编码过的头部将被打印.
此时对于特殊的压缩包,会如下显示:
*S+n 或者 *SA+n, 其中n代表包的(顺序号或(顺序号和应答号))增加或减少的数目(nt | rt:S,SA拗口, 需再译).
对于非特殊的压缩包,0个或更多的'改变'将会被打印.'改变'被打印时格式如下:
'标志'+/-/=n 包数据的长度 压缩的头部长度.
其中'标志'可以取以下值:
U(代表紧急指针), W(指缓冲窗口), A(应答), S(序列号), I(包ID),而增量表达'=n'表示被赋予新的值, +/-表示增加或减少.

比如, 以下显示了对一个外发压缩TCP数据包的打印, 这个数据包隐含一个连接标识(connection identifier); 应答号增加了6,
顺序号增加了49, 包ID号增加了6; 包数据长度为3字节(octect), 压缩头部为6字节.(nt:如此看来这应该不是一个特殊的压缩数据包).

ARP/RARP 数据包

tcpdump对Arp/rarp包的输出信息中会包含请求类型及该请求对应的参数. 显示格式简洁明了. 以下是从主机rtsg到主机csam的'rlogin'
(远程登录)过程开始阶段的数据包样例:
arp who-has csam tell rtsg
arp reply csam is-at CSAM
第一行表示:rtsg发送了一个arp数据包(nt:向全网段发送,arp数据包)以询问csam的以太网地址
Csam(nt:可从下文看出来, 是Csam)以她自己的以太网地址做了回应(在这个例子中, 以太网地址以大写的名字标识, 而internet
地址(即ip地址)以全部的小写名字标识).

如果使用tcpdump -n, 可以清晰看到以太网以及ip地址而不是名字标识:
arp who-has 128.3.254.6 tell 128.3.254.68
arp reply 128.3.254.6 is-at 02:07:01:00:01:c4

如果我们使用tcpdump -e, 则可以清晰的看到第一个数据包是全网广播的, 而第二个数据包是点对点的:
RTSG Broadcast 0806 64: arp who-has csam tell rtsg
CSAM RTSG 0806 64: arp reply csam is-at CSAM
第一个数据包表明:以arp包的源以太地址是RTSG, 目标地址是全以太网段, type域的值为16进制0806(表示ETHER_ARP(nt:arp包的类型标识)),
包的总长度为64字节.

TCP 数据包

(注意:以下将会假定你对 RFC-793所描述的TCP熟悉. 如果不熟, 以下描述以及tcpdump程序可能对你帮助不大.(nt:警告可忽略,
只需继续看, 不熟悉的地方可回头再看.).


通常tcpdump对tcp数据包的显示格式如下:
src > dst: flags data-seqno ack window urgent options

src 和 dst 是源和目的IP地址以及相应的端口. flags 标志由S(SYN), F(FIN), P(PUSH, R(RST),
W(ECN CWT(nt | rep:未知, 需补充))或者 E(ECN-Echo(nt | rep:未知, 需补充))组成,
单独一个'.'表示没有flags标识. 数据段顺序号(Data-seqno)描述了此包中数据所对应序列号空间中的一个位置(nt:整个数据被分段,
每段有一个顺序号, 所有的顺序号构成一个序列号空间)(可参考以下例子). Ack 描述的是同一个连接,同一个方向,下一个本端应该接收的
(对方应该发送的)数据片段的顺序号. Window是本端可用的数据接收缓冲区的大小(也是对方发送数据时需根据这个大小来组织数据).
Urg(urgent) 表示数据包中有紧急的数据. options 描述了tcp的一些选项, 这些选项都用尖括号来表示(如 <mss 1024>).

src, dst 和 flags 这三个域总是会被显示. 其他域的显示与否依赖于tcp协议头里的信息.

这是一个从trsg到csam的一个rlogin应用登录的开始阶段.
rtsg.1023 > csam.login: S 768512:768512(0) win 4096 <mss 1024>
csam.login > rtsg.1023: S 947648:947648(0) ack 768513 win 4096 <mss 1024>
rtsg.1023 > csam.login: . ack 1 win 4096
rtsg.1023 > csam.login: P 1:2(1) ack 1 win 4096
csam.login > rtsg.1023: . ack 2 win 4096
rtsg.1023 > csam.login: P 2:21(19) ack 1 win 4096
csam.login > rtsg.1023: P 1:2(1) ack 21 win 4077
csam.login > rtsg.1023: P 2:3(1) ack 21 win 4077 urg 1
csam.login > rtsg.1023: P 3:4(1) ack 21 win 4077 urg 1
第一行表示有一个数据包从rtsg主机的tcp端口1023发送到了csam主机的tcp端口login上(nt:udp协议的端口和tcp协议的端
口是分别的两个空间, 虽然取值范围一致). S表示设置了SYN标志. 包的顺序号是768512, 并且没有包含数据.(表示格式
为:'first:last(nbytes)', 其含义是'此包中数据的顺序号从first开始直到last结束,不包括last. 并且总共包含nbytes的
用户数据'.) 没有捎带应答(nt:从下文来看,第二行才是有捎带应答的数据包), 可用的接受窗口的大小为4096bytes, 并且请求端(rtsg)
的最大可接受的数据段大小是1024字节(nt:这个信息作为请求发向应答端csam, 以便双方进一步的协商).

Csam 向rtsg 回复了基本相同的SYN数据包, 其区别只是多了一个' piggy-backed ack'(nt:捎带回的ack应答, 针对rtsg的SYN数据包).

rtsg 同样针对csam的SYN数据包回复了一ACK数据包作为应答. '.'的含义就是此包中没有标志被设置. 由于此应答包中不含有数据, 所以
包中也没有数据段序列号. 提醒! 此ACK数据包的顺序号只是一个小整数1. 有如下解释:tcpdump对于一个tcp连接上的会话, 只打印会话两端的
初始数据包的序列号,其后相应数据包只打印出与初始包序列号的差异.即初始序列号之后的序列号, 可被看作此会话上当前所传数据片段在整个
要传输的数据中的'相对字节'位置(nt:双方的第一个位置都是1, 即'相对字节'的开始编号). '-S'将覆盖这个功能, 
使数据包的原始顺序号被打印出来.

 

第六行的含义为:rtsg 向 csam发送了19字节的数据(字节的编号为2到20,传送方向为rtsg到csam). 包中设置了PUSH标志. 在第7行,
csam 喊到, 她已经从rtsg中收到了21以下的字节, 但不包括21编号的字节. 这些字节存放在csam的socket的接收缓冲中, 相应地,
csam的接收缓冲窗口大小会减少19字节(nt:可以从第5行和第7行win属性值的变化看出来). csam在第7行这个包中也向rtsg发送了一个
字节. 在第8行和第9行, csam 继续向rtsg 分别发送了两个只包含一个字节的数据包, 并且这个数据包带PUSH标志.

如果所抓到的tcp包(nt:即这里的snapshot)太小了,以至tcpdump无法完整得到其头部数据, 这时, tcpdump会尽量解析这个不完整的头,
并把剩下不能解析的部分显示为'[|tcp]'. 如果头部含有虚假的属性信息(比如其长度属性其实比头部实际长度长或短), tcpdump会为该头部
显示'[bad opt]'. 如果头部的长度告诉我们某些选项(nt | rt:从下文来看, 指tcp包的头部中针对ip包的一些选项, 回头再翻)会在此包中,
而真正的IP(数据包的长度又不够容纳这些选项, tcpdump会显示'[bad hdr length]'.


抓取带有特殊标志的的TCP包(如SYN-ACK标志, URG-ACK标志等).

在TCP的头部中, 有8比特(bit)用作控制位区域, 其取值为:
CWR | ECE | URG | ACK | PSH | RST | SYN | FIN
(nt | rt:从表达方式上可推断:这8个位是用或的方式来组合的, 可回头再翻)

现假设我们想要监控建立一个TCP连接整个过程中所产生的数据包. 可回忆如下:TCP使用3次握手协议来建立一个新的连接; 其与此三次握手
连接顺序对应,并带有相应TCP控制标志的数据包如下:
1) 连接发起方(nt:Caller)发送SYN标志的数据包
2) 接收方(nt:Recipient)用带有SYN和ACK标志的数据包进行回应
3) 发起方收到接收方回应后再发送带有ACK标志的数据包进行回应


0 15 31
-----------------------------------------------------------------
| source port | destination port |
-----------------------------------------------------------------
| sequence number |
-----------------------------------------------------------------
| acknowledgment number |
-----------------------------------------------------------------
| HL | rsvd |C|E|U|A|P|R|S|F| window size |
-----------------------------------------------------------------
| TCP checksum | urgent pointer |
-----------------------------------------------------------------

一个TCP头部,在不包含选项数据的情况下通常占用20个字节(nt | rt:options 理解为选项数据,需回译). 第一行包含0到3编号的字节,
第二行包含编号4-7的字节.

如果编号从0开始算, TCP控制标志位于13字节(nt:第四行左半部分).

 

0 7| 15| 23| 31
----------------|---------------|---------------|----------------
| HL | rsvd |C|E|U|A|P|R|S|F| window size |
----------------|---------------|---------------|----------------
| | 13th octet | | |

让我们仔细看看编号13的字节:

| |
|---------------|
|C|E|U|A|P|R|S|F|
|---------------|
|7 5 3 0|


这里有我们感兴趣的控制标志位. 从右往左这些位被依次编号为0到7, 从而 PSH位在3号, 而URG位在5号.

 

提醒一下自己, 我们只是要得到包含SYN标志的数据包. 让我们看看在一个包的包头中, 如果SYN位被设置, 到底
在13号字节发生了什么:

|C|E|U|A|P|R|S|F|
|---------------|
|0 0 0 0 0 0 1 0|
|---------------|
|7 6 5 4 3 2 1 0|


在控制段的数据中, 只有比特1(bit number 1)被置位.

假设编号为13的字节是一个8位的无符号字符型,并且按照网络字节号排序(nt:对于一个字节来说,网络字节序等同于主机字节序), 其二进制值
如下所示:
00000010

并且其10进制值为:

0*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 2(nt: 1 * 2^6 表示1乘以2的6次方, 也许这样更
清楚些, 即把原来表达中的指数7 6 ... 0挪到了下面来表达)

接近目标了, 因为我们已经知道, 如果数据包头部中的SYN被置位, 那么头部中的第13个字节的值为2(nt: 按照网络序, 即大头方式, 最重要的字节
在前面(在前面,即该字节实际内存地址比较小, 最重要的字节,指数学表示中数的高位, 如356中的3) ).

表达为tcpdump能理解的关系式就是:
tcp[13] 2

从而我们可以把此关系式当作tcpdump的过滤条件, 目标就是监控只含有SYN标志的数据包:
tcpdump -i xl0 tcp[13] 2 (nt: xl0 指网络接口, 如eth0)

这个表达式是说"让TCP数据包的第13个字节拥有值2吧", 这也是我们想要的结果.


现在, 假设我们需要抓取带SYN标志的数据包, 而忽略它是否包含其他标志.(nt:只要带SYN就是我们想要的). 让我们来看看当一个含有
SYN-ACK的数据包(nt:SYN 和 ACK 标志都有), 来到时发生了什么:
|C|E|U|A|P|R|S|F|
|---------------|
|0 0 0 1 0 0 1 0|
|---------------|
|7 6 5 4 3 2 1 0|

13号字节的1号和4号位被置位, 其二进制的值为:
00010010

转换成十进制就是:

0*2^7 + 0*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2 = 18(nt: 1 * 2^6 表示1乘以2的6次方, 也许这样更
清楚些, 即把原来表达中的指数7 6 ... 0挪到了下面来表达)

现在, 却不能只用'tcp[13] 18'作为tcpdump的过滤表达式, 因为这将导致只选择含有SYN-ACK标志的数据包, 其他的都被丢弃.
提醒一下自己, 我们的目标是: 只要包的SYN标志被设置就行, 其他的标志我们不理会.

为了达到我们的目标, 我们需要把13号字节的二进制值与其他的一个数做AND操作(nt:逻辑与)来得到SYN比特位的值. 目标是:只要SYN 被设置
就行, 于是我们就把她与上13号字节的SYN值(nt: 00000010).

00010010 SYN-ACK 00000010 SYN
AND 00000010 (we want SYN) AND 00000010 (we want SYN)
-------- --------
= 00000010 = 00000010

我们可以发现, 不管包的ACK或其他标志是否被设置, 以上的AND操作都会给我们相同的值, 其10进制表达就是2(2进制表达就是00000010).
从而我们知道, 对于带有SYN标志的数据包, 以下的表达式的结果总是真(true):

( ( value of octet 13 ) AND ( 2 ) ) ( 2 ) (nt: value of octet 13, 即13号字节的值)

灵感随之而来, 我们于是得到了如下的tcpdump 的过滤表达式
tcpdump -i xl0 'tcp[13] & 2 2'

注意, 单引号或反斜杆(nt: 这里用的是单引号)不能省略, 这可以防止shell对&的解释或替换.


UDP 数据包

UDP 数据包的显示格式,可通过rwho这个具体应用所产生的数据包来说明:
actinide.who > broadcast.who: udp 84

其含义为:actinide主机上的端口who向broadcast主机上的端口who发送了一个udp数据包(nt: actinide和broadcast都是指Internet地址).
这个数据包承载的用户数据为84个字节.

一些UDP服务可从数据包的源或目的端口来识别,也可从所显示的更高层协议信息来识别. 比如, Domain Name service requests(DNS 请求,
在RFC-1034/1035中), 和Sun RPC calls to NFS(对NFS服务器所发起的远程调用(nt: 即Sun RPC),在RFC-1050中有对远程调用的描述).

UDP 名称服务请求

(注意:以下的描述假设你对Domain Service protoco(nt:在RFC-103中有所描述), 否则你会发现以下描述就是天书(nt:希腊文天书,
不必理会, 吓吓你的, 接着看就行))

名称服务请求有如下的格式:
src > dst: id op? flags qtype qclass name (len)
(nt: 从下文来看, 格式应该是src > dst: id op flags qtype qclass? name (len))
比如有一个实际显示为:
h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)

主机h2opolo 向helios 上运行的名称服务器查询ucbvax.berkeley.edu 的地址记录(nt: qtype等于A). 此查询本身的id号为'3'. 符号
'+'意味着递归查询标志被设置(nt: dns服务器可向更高层dns服务器查询本服务器不包含的地址记录). 这个最终通过IP包发送的查询请求
数据长度为37字节, 其中不包括UDP和IP协议的头数据. 因为此查询操作为默认值(nt | rt: normal one的理解), op字段被省略.
如果op字段没被省略, 会被显示在'3' 和'+'之间. 同样, qclass也是默认值, C_IN, 从而也没被显示, 如果没被忽略, 她会被显示在'A'之后.

异常检查会在方括中显示出附加的域: 如果一个查询同时包含一个回应(nt: 可理解为, 对之前其他一个请求的回应), 并且此回应包含权威或附加记录段, 
ancount, nscout, arcount(nt: 具体字段含义需补充) 将被显示为'[na]', '[nn]', '[nau]', 其中n代表合适的计数. 如果包中以下
回应位(比如AA位, RA位, rcode位), 或者字节2或3中任何一个'必须为0'的位被置位(nt: 设置为1), '[b2&3]=x' 将被显示, 其中x表示
头部字节2与字节3进行与操作后的值.

UDP 名称服务应答

对名称服务应答的数据包,tcpdump会有如下的显示格式
src > dst: id op rcode flags a/n/au type class data (len)
比如具体显示如下:
helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)
helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)

第一行表示: helios 对h2opolo 所发送的3号查询请求回应了3条回答记录(nt | rt: answer records), 3条名称服务器记录,
以及7条附加的记录. 第一个回答记录(nt: 3个回答记录中的第一个)类型为A(nt: 表示地址), 其数据为internet地址128.32.137.3.
此回应UDP数据包, 包含273字节的数据(不包含UPD和IP的头部数据). op字段和rcode字段被忽略(nt: op的实际值为Query, rcode, 即
response code的实际值为NoError), 同样被忽略的字段还有class 字段(nt | rt: 其值为C_IN, 这也是A类型记录默认取值)

第二行表示: helios 对h2opolo 所发送的2号查询请求做了回应. 回应中, rcode编码为NXDomain(nt: 表示不存在的域)), 没有回答记录,
但包含一个名称服务器记录, 不包含权威服务器记录(nt | ck: 从上文来看, 此处的authority records 就是上文中对应的additional
records). '*'表示权威服务器回答标志被设置(nt: 从而additional records就表示的是authority records).
由于没有回答记录, type, class, data字段都被忽略.

flag字段还有可能出现其他一些字符, 比如'-'(nt: 表示可递归地查询, 即RA 标志没有被设置), '|'(nt: 表示被截断的消息, 即TC 标志
被置位). 如果应答(nt | ct: 可理解为, 包含名称服务应答的UDP数据包, tcpdump知道这类数据包该怎样解析其数据)的'question'段一个条
目(entry)都不包含(nt: 每个条目的含义, 需补充),'[nq]' 会被打印出来.

要注意的是:名称服务器的请求和应答数据量比较大, 而默认的68字节的抓取长度(nt: snaplen, 可理解为tcpdump的一个设置选项)可能不足以抓取
数据包的全部内容. 如果你真的需要仔细查看名称服务器的负载, 可以通过tcpdump 的-s 选项来扩大snaplen值.

转自 http://www.cnblogs.com/ggjucheng/archive/2012/01/14/2322659.html

抱歉!评论已关闭.