现在的位置: 首页 > 综合 > 正文

Typedef与Typename的资料汇总

2013年09月10日 ⁄ 综合 ⁄ 共 14134字 ⁄ 字号 评论关闭

定义易于记忆的类型名
  typedef 使用最多的地方是创建易于记忆的类型名,用它来归档程序员的意图。类型出现在所声明的变量名字中,位于 ''typedef'' 关键字右边。例如:

typedef int size;

  此声明定义了一个 int 的同义字,名字为 size。注意 typedef 并不创建新的类型。它仅仅为现有类型添加一个同义字。你可以在任何需要 int 的上下文中使用 size:

void measure(size * psz); 
size array[4];
size len = file.getlength();
std::vector <size> vs; 

  typedef 还可以掩饰符合类型,如指针和数组。例如,你不用象下面这样重复定义有 81 个字符元素的数组:

char line[81];
char text[81];

定义一个 typedef,每当要用到相同类型和大小的数组时,可以这样:

typedef char Line[81]; 
Line text, secondline;
getline(text);

同样,可以象下面这样隐藏指针语法:

typedef char * pstr;
int mystrcmp(pstr, pstr);

  这里将带我们到达第一个 typedef 陷阱。标准函数 strcmp()有两个‘const char *’类型的参数。因此,它可能会误导人们象下面这样声明 mystrcmp():

int mystrcmp(const pstr, const pstr); 

  这是错误的,按照顺序,‘const pstr’被解释为‘char * const’(一个指向 char 的常量指针),而不是‘const char *’(指向常量 char 的指针)。这个问题很容易解决:

typedef const char * cpstr; 
int mystrcmp(cpstr, cpstr); // 现在是正确的

记住:不管什么时候,只要为指针声明 typedef,那么都要在最终的 typedef 名称中加一个 const,以使得该指针本身是常量,而不是对象。

代码简化
  上面讨论的 typedef 行为有点像 #define 宏,用其实际类型替代同义字。不同点是 typedef 在编译时被解释,因此让编译器来应付超越预处理器能力的文本替换。例如:

typedef int (*PF) (const char *, const char *);

  这个声明引入了 PF 类型作为函数指针的同义字,该函数有两个 const char * 类型的参数以及一个 int 类型的返回值。如果要使用下列形式的函数声明,那么上述这个 typedef 是不可或缺的:

PF Register(PF pf);

  Register() 的参数是一个 PF 类型的回调函数,返回某个函数的地址,其署名与先前注册的名字相同。做一次深呼吸。下面我展示一下如果不用 typedef,我们是如何实现这个声明的:

int (*Register (int (*pf)(const char *, const char *))) 
(const char *, const char *); 

  很少有程序员理解它是什么意思,更不用说这种费解的代码所带来的出错风险了。显然,这里使用 typedef 不是一种特权,而是一种必需。持怀疑态度的人可能会问:“OK,有人还会写这样的代码吗?”,快速浏览一下揭示 signal()函数的头文件 <csinal>,一个有同样接口的函数。

typedef 和存储类关键字(storage class specifier)
  这种说法是不是有点令人惊讶,typedef 就像 auto,extern,mutable,static,和 register 一样,是一个存储类关键字。这并是说 typedef 会真正影响对象的存储特性;它只是说在语句构成上,typedef 声明看起来象 static,extern 等类型的变量声明。下面将带到第二个陷阱:

typedef register int FAST_COUNTER; // 错误

  编译通不过。问题出在你不能在声明中有多个存储类关键字。因为符号 typedef 已经占据了存储类关键字的位置,在 typedef 声明中不能用 register(或任何其它存储类关键字)。

促进跨平台开发
  typedef 有另外一个重要的用途,那就是定义机器无关的类型,例如,你可以定义一个叫 REAL 的浮点类型,在目标机器上它可以i获得最高的精度:

typedef long double REAL; 

在不支持 long double 的机器上,该 typedef 看起来会是下面这样:

typedef double REAL; 

并且,在连 double 都不支持的机器上,该 typedef 看起来会是这样: 、

typedef float REAL; 

  你不用对源代码做任何修改,便可以在每一种平台上编译这个使用 REAL 类型的应用程序。唯一要改的是 typedef 本身。在大多数情况下,甚至这个微小的变动完全都可以通过奇妙的条件编译来自动实现。不是吗? 标准库广泛地使用 typedef 来创建这样的平台无关类型:size_t,ptrdiff 和 fpos_t 就是其中的例子。此外,象 std::string 和 std::ofstream 这样的 typedef 还隐藏了长长的,难以理解的模板特化语法,例如:basic_string<char, char_traits<char>,allocator<char>> 和 basic_ofstream<char, char_traits<char>>。

/------------------------------------------------------------------------------------------------------------------------------------------------

 

代码简化, 促进跨平台开发的目的.

 typedef 行为有点像 #define 宏,用其实际类型替代同义字。

 不同点:typedef 在编译时被解释,因此让编译器来应付超越预处理器能力的文本替换

用法一:

typedef int (*MYFUN)(int, int);
这种用法一般用在给函数定义别名的时候
上面的例子定义MYFUN 是一个函数指针, 函数类型是带两个int 参数, 返回一个int

分析这种形式的定义的时候可以用下面的方法:
先去掉typedef 和别名, 剩下的就是原变量的类型.
去掉typedef和MYFUN以后就剩:
int (*)(int, int)

用法二:

typedef给变量类型定义一个别名.

typedef struct{
int a;
int b;
}MY_TYPE;

这里把一个未命名结构直接取了一个叫MY_TYPE的别名, 这样如果你想定义结构的实例的时候就可以这样:
MY_TYPE tmp;

 

第二种用法:typedef 原变量类型 别名

简单的函数指针的用法

//形式1:返回类型(*函数名)(参数表)

char(*pFun)(int);

//typedef char(*pFun)(int)   //跟上一行功能等同

/*typedef的功能是定义新的类型。第一句就是定义了一种PTRFUN的类型,并定义这种类型为指向某种函数的指针,这种函数以一个int为参数并返回char类型。*/

char glFun(int a){return;}

void main()

{

pFun =glFun;

(*pFun)(2);

}

第一行定义了一个指针变量pFun.它是一个指向某种函数的指针,这种函数参数是一个int类型,返回值是char类型。只有第一句我们还无法使用这个指针,因为我们还未对它进行赋值

第二行定义了一个函数glFun().该函数正好是一个以int为参数返回char的函数。我们要从指针的层次上理解函数-函数的函数名实际上就是一个指针函数名指向该函数的代码在内存中的首地址

 

下面是一个例子:

C代码 复制代码
  1. //#include<iostream.h>   
  2. #include<stdio.h>   
  3.   
  4. typedef int (*FP_CALC)(intint);   
  5. //注意这里不是函数声明而是函数定义,它是一个地址,你可以直接输出add看看   
  6. int add(int a, int b)   
  7. {   
  8.      return a + b;   
  9. }   
  10. int sub(int a, int b)   
  11. {   
  12.      return a - b;   
  13. }   
  14. int mul(int a, int b)   
  15. {   
  16.      return a * b;   
  17. }   
  18. int div(int a, int b)   
  19. {   
  20.      return b? a/b : -1;   
  21. }   
  22. //定义一个函数,参数为op,返回一个指针。该指针类型为 拥有两个int参数、   
  23. //返回类型为int 的函数指针。它的作用是根据操作符返回相应函数的地址   
  24. FP_CALC calc_func(char op)   
  25. {   
  26.      switch (op)   
  27.      {   
  28.      case '+'return add;//返回函数的地址   
  29.      case '-'return sub;   
  30.      case '*'return mul;   
  31.      case '/'return div;   
  32.      default:   
  33.          return NULL;   
  34.      }   
  35.      return NULL;   
  36. }   
  37. //s_calc_func为函数,它的参数是 op,   
  38. //返回值为一个拥有 两个int参数、返回类型为int 的函数指针   
  39. int (*s_calc_func(char op)) (intint)   
  40. {   
  41.      return calc_func(op);   
  42. }    
  43. //最终用户直接调用的函数,该函数接收两个int整数,和一个算术运算符,返回两数的运算结果   
  44. int calc(int a, int b, char op)   
  45. {   
  46.      FP_CALC fp = calc_func(op); //根据预算符得到各种运算的函数的地址   
  47.          int (*s_fp)(intint) = s_calc_func(op);//用于测试   
  48.          // ASSERT(fp == s_fp);   // 可以断言这俩是相等的   
  49.      if (fp) return fp(a, b);//根据上一步得到的函数的地址调用相应函数,并返回结果   
  50.      else return -1;   
  51. }   
  52.   
  53. void main()   
  54. {      
  55.     int a = 100, b = 20;   
  56.   
  57.      printf("calc(%d, %d, %c) = %d/n", a, b, '+', calc(a, b, '+'));   
  58.      printf("calc(%d, %d, %c) = %d/n", a, b, '-', calc(a, b, '-'));   
  59.      printf("calc(%d, %d, %c) = %d/n", a, b, '*', calc(a, b, '*'));   
  60.      printf("calc(%d, %d, %c) = %d/n", a, b, '/', calc(a, b, '/'));   
  61. }  

 运行结果

   calc(100, 20, +) = 120

   calc(100, 20, -) = 80

   calc(100, 20, *) = 2000

   calc(100, 20, /) = 5

/--------------------------------------------------------------------------------------------------------------------------------------------------

  问题:在下面的 template declarations(模板声明)中 class 和 typename 有什么不同?

template<class T> class Widget; // uses "class"
template<typename T> class Widget; // uses "typename"

  答案:没什么不同。在声明一个 template type parameter(模板类型参数)的时候,class 和 typename 意味着完全相同的东西。一些程序员更喜欢在所有的时间都用 class,因为它更容易输入。其他人(包括我本人)更喜欢 typename,因为它暗示着这个参数不必要是一个 class type(类类型)。少数开发者在任何类型都被允许的时候使用 typename,而把 class 保留给仅接受 user-defined types(用户定义类型)的场合。但是从 C++ 的观点看,class 和 typename 在声明一个 template parameter(模板参数)时意味着完全相同的东西。

  然而,C++ 并不总是把 class 和 typename 视为等同的东西。有时你必须使用 typename。为了理解这一点,我们不得不讨论你会在一个 template(模板)中涉及到的两种名字。

  假设我们有一个函数的模板,它能取得一个 STL-compatible container(STL 兼容容器)中持有的能赋值给 ints 的对象。进一步假设这个函数只是简单地打印它的第二个元素的值。它是一个用糊涂的方法实现的糊涂的函数,而且就像我下面写的,它甚至不能编译,但是请将这些事先放在一边——有一种方法能发现我的愚蠢:

template<typename C> // print 2nd element in
void print2nd(const C& container) // container;
{
 // this is not valid C++!
 if (container.size() >= 2) {
  C::const_iterator iter(container.begin()); // get iterator to 1st element
  ++iter; // move iter to 2nd element
  int value = *iter; // copy that element to an int
  std::cout << value; // print the int
 }
}

  我突出了这个函数中的两个 local variables(局部变量),iter 和 value。iter 的类型是 C::const_iterator,一个依赖于 template parameter(模板参数)C 的类型。一个 template(模板)中的依赖于一个 template parameter(模板参数)的名字被称为 dependent names(依赖名字)。当一个 dependent names(依赖名字)嵌套在一个 class(类)的内部时,我称它为 nested dependent name(嵌套依赖名字)。C::const_iterator 是一个 nested dependent name(嵌套依赖名字)。实际上,它是一个 nested dependent type name(嵌套依赖类型名),也就是说,一个涉及到一个 type(类型)的 nested dependent name(嵌套依赖名字)。

  print2nd 中的另一个 local variable(局部变量)value 具有 int 类型。int 是一个不依赖于任何 template parameter(模板参数)的名字。这样的名字以 non-dependent names(非依赖名字)闻名。(我想不通为什么他们不称它为 independent names(无依赖名字)。如果,像我一样,你发现术语 "non-dependent" 是一个令人厌恶的东西,你就和我产生了共鸣,但是 "non-dependent" 就是这类名字的术语,所以,像我一样,转转眼睛放弃你的自我主张。)

  nested dependent name(嵌套依赖名字)会导致解析困难。例如,假设我们更加愚蠢地以这种方法开始 print2nd:

template<typename C>
void print2nd(const C& container)
{
 C::const_iterator * x;
 ...
}

  这看上去好像是我们将 x 声明为一个指向 C::const_iterator 的 local variable(局部变量)。但是它看上去如此仅仅是因为我们知道 C::const_iterator 是一个 type(类型)。但是如果 C::const_iterator 不是一个 type(类型)呢?如果 C 有一个 static data member(静态数据成员)碰巧就叫做 const_iterator 呢?再如果 x 碰巧是一个 global variable(全局变量)的名字呢?在这种情况下,上面的代码就不是声明一个 local variable(局部变量),而是成为 C::const_iterator 乘以 x!当然,这听起来有些愚蠢,但它是可能的,而编写 C++ 解析器的人必须考虑所有可能的输入,甚至是愚蠢的。

  直到 C 成为已知之前,没有任何办法知道 C::const_iterator 到底是不是一个 type(类型),而当 template(模板)print2nd 被解析的时候,C 还不是已知的。C++ 有一条规则解决这个歧义:如果解析器在一个 template(模板)中遇到一个 nested dependent name(嵌套依赖名字),它假定那个名字不是一个 type(类型),除非你用其它方式告诉它。缺省情况下,nested dependent name(嵌套依赖名字)不是 types(类型)。(对于这条规则有一个例外,我待会儿告诉你。)

  记住这个,再看看 print2nd 的开头:

template<typename C>
void print2nd(const C& container)
{
 if (container.size() >= 2) {
  C::const_iterator iter(container.begin()); // this name is assumed to
  ... // not be a type

  这为什么不是合法的 C++ 现在应该很清楚了。iter 的 declaration(声明)仅仅在 C::const_iterator 是一个 type(类型)时才有意义,但是我们没有告诉 C++ 它是,而 C++ 就假定它不是。要想转变这个形势,我们必须告诉 C++ C::const_iterator 是一个 type(类型)。我们将 typename 放在紧挨着它的前面来做到这一点:

template<typename C> // this is valid C++
void print2nd(const C& container)
{
if (container.size() >= 2) {
typename C::const_iterator iter(container.begin());
...
}
}

  通用的规则很简单:在你涉及到一个在 template(模板)中的 nested dependent type name(嵌套依赖类型名)的任何时候,你必须把单词 typename 放在紧挨着它的前面。(重申一下,我待会儿要描述一个例外。)

  typename 应该仅仅被用于标识 nested dependent type name(嵌套依赖类型名);其它名字不应该用它。例如,这是一个取得一个 container(容器)和这个 container(容器)中的一个 iterator(迭代器)的 function template(函数模板):

template<typename C> // typename allowed (as is "class")
void f(const C& container, // typename not allowed
typename C::iterator iter); // typename required

  C 不是一个 nested dependent type name(嵌套依赖类型名)(它不是嵌套在依赖于一个 template parameter(模板参数)的什么东西内部的),所以在声明 container 时它不必被 typename 前置,但是 C::iterator 是一个 nested dependent type name(嵌套依赖类型名),所以它必需被 typename 前置。

  "typename must precede nested dependent type names"(“typename 必须前置于嵌套依赖类型名”)规则的例外是 typename 不必前置于在一个 list of base classes(基类列表)中的或者在一个 member initialization list(成员初始化列表)中作为一个 base classes identifier(基类标识符)的 nested dependent type name(嵌套依赖类型名)。例如:

template<typename T>
class Derived: public Base<T>::Nested {
 // base class list: typename not
 public: // allowed
  explicit Derived(int x)
  : Base<T>::Nested(x) // base class identifier in mem
  {
   // init. list: typename not allowed
 
   typename Base<T>::Nested temp; // use of nested dependent type
   ... // name not in a base class list or
  } // as a base class identifier in a
  ... // mem. init. list: typename required
};

  这样的矛盾很令人讨厌,但是一旦你在经历中获得一点经验,你几乎不会在意它。

  让我们来看最后一个 typename 的例子,因为它在你看到的真实代码中具有代表性。假设我们在写一个取得一个 iterator(迭代器)的 function template(函数模板),而且我们要做一个 iterator(迭代器)指向的 object(对象)的局部拷贝 temp,我们可以这样做:

template<typename IterT>
void workWithIterator(IterT iter)
{
 typename std::iterator_traits<IterT>::value_type temp(*iter);
 ...
}

  不要让 std::iterator_traits<IterT>::value_type 吓倒你。那仅仅是一个 standard traits class(标准特性类)的使用,用 C++ 的说法就是 "the type of thing pointed to by objects of type IterT"(“被类型为 IterT 的对象所指向的东西的类型”)。这个语句声明了一个与 IterT objects 所指向的东西类型相同的 local variable(局部变量)(temp),而且用 iter 所指向的 object(对象)对 temp 进行了初始化。如果 IterT 是 vector<int>::iterator,temp 就是 int 类型。如果 IterT 是 list<string>::iterator,temp 就是 string 类型。因为 std::iterator_traits<IterT>::value_type 是一个 nested dependent type name(嵌套依赖类型名)(value_type 嵌套在 iterator_traits<IterT> 内部,而且 IterT 是一个 template parameter(模板参数)),我们必须让它被 typename 前置。

  如果你觉得读 std::iterator_traits<IterT>::value_type 令人讨厌,就想象那个与它相同的东西来代表它。如果你像大多数程序员,对多次输入它感到恐惧,那么你就需要创建一个 typedef。对于像 value_type 这样的 traits member names(特性成员名),一个通用的惯例是 typedef name 与 traits member name 相同,所以这样的一个 local typedef 通常定义成这样:

template<typename IterT>
void workWithIterator(IterT iter)
{
 typedef typename std::iterator_traits<IterT>::value_type value_type;

 value_type temp(*iter);
 ...
}

  很多程序员最初发现 "typedef typename" 并列不太和谐,但它是涉及 nested dependent type names(嵌套依赖类型名)规则的一个合理的附带结果。你会相当快地习惯它。你毕竟有着强大的动机。你输入 typename std::iterator_traits<IterT>::value_type 需要多少时间?

  作为结束语,我应该提及编译器与编译器之间对围绕 typename 的规则的执行情况的不同。一些编译器接受必需 typename 时它却缺失的代码;一些编译器接受不许 typename 时它却存在的代码;还有少数的(通常是老旧的)会拒绝 typename 出现在它必需出现的地方。这就意味着 typename 和 nested dependent type names(嵌套依赖类型名)的交互作用会导致一些轻微的可移植性问题。

  Things to Remember

  ·在声明 template parameters(模板参数)时,class 和 typename 是可互换的。

  ·用 typename 去标识 nested dependent type names(嵌套依赖类型名),在 base class lists(基类列表)中或在一个 member initialization list(成员初始化列表)中作为一个 base class identifier(基类标识符)时除外。

 

/--------------------------------------------------------------------------------------------------------------------------------------------------

 

typename和typedef关键字,区别

typename指示一个类型名,而非定义一个类型,以下声明了一个Seq::iterator类型的变量itr,其中Seq是一个模板实例化时才知道的类:

    typename Seq::iterator itr;

如果没有typename指示,Seq::iterator会被认为是Seq的静态变量,而不是类型名。

typename关键字不会定义一个类型,如果你想定义一个新类型的话,你必须这样:

    typedef typename Seq::iterator ITR;

以上来自:http://blog.csdn.net/jq0123/archive/2007/04/26/1585443.aspx

1、类型说明typedef

类型说明的格式为:
     typedef 类型 定义名;
    类型说明只定义了一个数据类型的新名字而不是定义一种新的数据类型。定义名表示这个类型的新名字。
    例如: 用下面语句定义整型数的新名字:
     typedef int SIGNED_INT;
    使用说明后, SIGNED_INT就成为int的同义词了, 此时可以用SIGNED_INT 定
义整型变量。
    例如: SIGNED_INT i, j;(与int i, j等效)。
    但 long SIGNED_INT i, j; 是非法的。
    typedef同样可用来说明结构、联合以及枚举和类。
    说明一个结构的格式为:
      typedef struct{
          数据类型 成员名;
          数据类型 成员名;
          ...
        } 结构名;
    此时可直接用结构名定义结构变量了。例如:
     typedef struct{
          char name[8];
          int class;
          char subclass[6];
          float math, phys, chem, engl, biol;
      } student;
      student Liuqi;
    则Liuqi被定义为结构数组和结构指针。
2、类型解释Typename

Typename关键字告诉了编译器把一个特殊的名字解释成一个类型,在下列情况下必须对一个name使用typename关键字:

1. 一个唯一的name(可以作为类型理解),它嵌套在另一个类型中的。

2. 依赖于一个模板参数,就是说:模板参数在某种程度上包含这个name。当模板参数使编译器在指认一个类型时产生了误解。

 

保险期间,你应该在所有编译器可能错把一个type当成一个变量的地方使用typename。就像上面那个例子中的T::id,因为我们使用了typename,所以编译器就知道了它是一个类型,可以用来声明并创建实例。

 

给你一个简明的使用指南:如果你的类型在模板参数中是有限制的,那你就必须使用typename.

 

#include <iostream>
#include <typeinfo> // for typeid() operator

using namespace std;

template <typename TP>
struct COne {   // default member is public
    typedef TP one_value_type;
};

template <typename COne>   // 用一个模板类作为模板参数, 这是很常见的
struct CTwo {
    // 请注意以下两行
    // typedef COne:one_value_type two_value_type;   // *1
    typedef typename COne:one_value_type two_value_type; // *2
};

// 以上两个模板类只是定义了两个内部的public类型, 但请注意第二个类CTwo的two_value_type类型
// 依赖COne的one_value_type, 而后者又取决于COne模板类实例化时传入的参数类型.

int main()
{
    typedef COne<int> OneInt_type;
    typedef CTwo< OneInt_type > TwoInt_type;
    TwoInt_type::two_value_type i;
    int j;
    if ( typeid(i) == typeid(j) )   // 如果i是int型变量
        cout << "Right!" << endl;   // 打印Right
    return;
}
以上例子在Linux下用G++ 2.93编译通过, 结果打印"Right". 但是如果把*1行的注释号去掉, 注释
*2行, 则编译时报错, 编译器不知道COne:one_value_type为何物. 通常在模板类参数中的类型到
实例化之后才会显露真身, 但这个CTwo类偏偏又要依赖一个已经存在的COne模板类, 希望能够预先
保证CTwo::two_value_type与COne:one_value属于同一类型, 这是就只好请typename出山, 告诉
编译器, 后面的COne:one_value_type是一个已经存在于某处的类型的名字(type name), 这样编译
器就可以顺利的工作了.

使用typename来代替class

/-----------------------------------------------------------------------------------------------------------------------------------------------

摘自网上四篇博客

抱歉!评论已关闭.