现在的位置: 首页 > 综合 > 正文

SIFT算法详解

2013年09月12日 ⁄ 综合 ⁄ 共 6764字 ⁄ 字号 评论关闭

转自http://blog.csdn.net/zddmail/article/details/7521424,对原作者表示感谢。

尺度不变特征变换匹配算法详解
Scale Invariant Feature Transform(SIFT)
Just For Fun

zdd  zddmail@gmail.com

对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。

1SIFT综述

尺度不变特征转换(Scale-invariant feature transformSIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe1999年所发表,2004年完善总结。

其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。

此算法有其专利,专利拥有者为英属哥伦比亚大学。

局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。

SIFT算法的特点有:

1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;

2. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;

3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;

4. 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;

5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。

SIFT算法可以解决的问题:

目标的自身状态、场景所处的环境和成像器材的成像特性等因素影响图像配准/目标识别跟踪的性能。而SIFT算法在一定程度上可解决:

1. 目标的旋转、缩放、平移(RST

2. 图像仿射/投影变换(视点viewpoint

3. 光照影响(illumination

4. 目标遮挡(occlusion

5. 杂物场景(clutter

6. 噪声

SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。 

LoweSIFT算法分解为如下四步:

1. 尺度空间极值检测:搜索所有尺度上(就相当于从无穷远到无穷近的地方观察图像)的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点(为什么用高斯微分函数?因为高斯函数能够模拟尺度)

2. 关键点定位:在每个候选的位置上,通过一个拟合精细的模型(什么模型?这里一般用Taylor展开来确定位置和尺度。关键点的选择依据于它们的稳定程度。

3. 方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向(为什么方向是分配的?认为规定比如4*4*8=128)。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。

4. 关键点描述:在每个关键点周围的邻域内,在选定的尺度上(这个尺度的标准?)测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。

本文沿着Lowe的步骤,参考Rob HessAndrea Vedaldi源码,详解SIFT算法的实现过程。

2、高斯模糊

SIFT算法是在不同的尺度空间上查找关键点,而尺度空间的获取需要使用高斯模糊来实现Lindeberg等人已证明高斯卷积核是实现尺度变换的唯一变换核,并且是唯一的线性核。本节先介绍高斯模糊算法。

2.1二维高斯函数

高斯模糊是一种图像滤波器(图像滤波就是对图像中的噪音进行处理),它使用正态分布(高斯函数)计算模糊模板,并使用该模板与原图像做卷积运算,达到模糊图像的目的。

N维空间正态分布方程为:

1-1

其中,是正态分布的标准差,值越大,图像越模糊(平滑)r为模糊半径,模糊半径是指模板元素到模板中心的距离。如二维模板大小为m*n,则模板上的元素(x,y)对应的高斯计算公式为:

1-2

   在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆,如图2.1所示。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。

理论上来讲,图像中每点的分布都不为零,这也就是说每个像素的计算都需要包含整幅图像。在实际应用中,在计算高斯函数的离散近似时,在大概3σ距离之外的像素都可以看作不起作用,这些像素的计算也就可以忽略。通常,图像处理程序只需要计算的矩阵就可以保证相关像素影响。

2.2 图像的二维高斯模糊

根据σ的值,计算出高斯模板矩阵的大小(),使用公式(1-2)计算高斯模板矩阵的值,与原图像做卷积,即可获得原图像的平滑(高斯模糊)图像。为了确保模板矩阵中的元素在[0,1]之间,需将模板矩阵归一化。5*5的高斯模板如表2.1所示。


下图是5*5的高斯模板卷积计算示意图。高斯模板是中心对称的。

2.3分离高斯模糊

如图2.3所示,使用二维的高斯模板达到了模糊图像的目的,但是会因模板矩阵的关系而造成边缘图像缺失(2.3 b,c)越大,缺失像素越多,丢弃模板会造成黑边(2.3 d)。更重要的是当变大时,斯模板(高斯核)和卷积运算量将大幅度提高。根据高斯函数的可分离性(实际应用),可对二维高斯模糊函数进行改进。

高斯函数的可分离性是指使用二维矩阵变换得到的效果也可以通过在水平方向进行一维高斯矩阵变换加上竖直方向的一维高斯矩阵变换得到。从计算的角度来看,这是一项有用的特性,因为这样只需要次计算,而二维不可分的矩阵则需要次计算,其中,m,n为高斯矩阵的维数,M,N为二维图像的维数。

另外,两次一维的高斯卷积将消除二维高斯矩阵所产生的边缘。

附录1是用opencv2.2实现的二维高斯模糊和分离高斯模糊。表2.2为上述两种方法和opencv2.3开源库实现的高斯模糊程序的比较。


3、尺度空间极值检测

尺度空间使用高斯金字塔表示Tony Lindeberg指出尺度规范化的LoG(Laplacion of Gaussian)算子具有真正的尺度不变性,Lowe使用高斯差分金字塔近似LoG算子,在尺度空间检测稳定的关键点。

(用尺度不变的算子LOG算子检查尺度不变的特征点,而LOG算子可以表示成两个高斯函数的差分算子,即DOG算子。利用分配率可以得到用LOG算子作用于图上就等价于利用高斯模糊后的图像进行相减得到的图像)

3.1 尺度空间理论

尺度空间(scale space)思想最早是由Iijima1962年提出的,后经witkinKoenderink等人的推广逐渐得到关注,在计算机视觉领域使用广泛。

尺度空间理论的基本思想是:在图像信息处理模型中引入一个被视为尺度的参数,通过连续变化尺度参数获得多尺度下的尺度空间表示序列,对这些序列进行尺度空间主轮廓的提取,并以该主轮廓作为一种特征向量,实现边缘、角点检测和不同分辨率上的特征提取等。(尺度就是一个特别的参数,这个参数的物理意义比较有用----能够表示人眼观察物体从近到远的过程,即图像从清晰到模糊的过程,这个过程可以通过高斯模糊表示,因此这个尺度因子必须加到高斯模糊中去。)

尺度空间方法将传统的单尺度图像信息处理技术纳入尺度不断变化的动态分析框架中,更容易获取图像的本质特征。尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程。

尺度空间满足视觉不变性。该不变性的视觉解释如下:当我们用眼睛观察物体时,一方面当物体所处背景的光照条件变化时,视网膜感知图像的亮度水平和对比度是不同的,因此要求尺度空间算子对图像的分析不受图像的灰度水平和对比度变化的影响,即满足灰度不变性和对比度不变性。另一方面,相对于某一固定坐标系,当观察者和物体之间的相对位置变化时,视网膜所感知的图像的位置、大小、角度和形状是不同的,因此要求尺度空间算子对图像的分析和图像的位置、大小、角度以及仿射变换无关,即满足平移不变性、尺度不变性、欧几里德不变性以及仿射不变性。

3.2 尺度空间的表示

一个图像的尺度空间,定义为一个变化尺度的高斯函数与原图像的卷积。

  (3-1)

其中,*表示卷积运算,

  (3-2)

与公式(1-2)相同,mn表示高斯模板的维度(确定)(x, y)代表图像的像素位置。是尺度空间因子,值越小表示图像被平滑的越少,相应的尺度也就越小。大尺度对应于图像的概貌特征,小尺度对应于图像的细节特征。

(在这里,尺度其实就是一个从近到远的观察过程,在这个过程中图像相对于观察者发生了两个方面的变化(1):图像变模糊了;(2):图像变小了。因此,对过程(1)是用高斯模糊来实现的,在高斯函数中加入尺度空间因子就动态的表示尺度的变化;对于过程(2)在构建高斯金字塔的时候对图像进行降采样处理就达到了要求。)

3.3 高斯金字塔的构建

尺度空间在实现时使用高斯金字塔表示,高斯金字塔的构建分为两部分:

1. 对图像做不同尺度的高斯模糊;

2. 对图像做降采样(隔点采样)

图像的金字塔模型是指,将原始图像不断降阶采样,得到一系列大小不一的图像,由大到小,从下到上构成的塔状模型。原图像为金子塔的第一层,每次降采样所得到的新图像为金字塔的一层(每层一张图像),每个金字塔共n层。金字塔的层数根据图像的原始大小和塔顶图像的大小共同决定,其计算公式如下:

(3-3)

其中MN为原图像的大小,t为塔顶图像的最小维数的对数值。如,对于大小为512*512的图像,金字塔上各层图像的大小如表3.1所示,当塔顶图像为4*4时,n=7,当塔顶图像为2*2时,n=8

为了让尺度体现其连续性,高斯金字塔在简单降采样的基础上加上了高斯滤波。如图3.1所示,将图像金字塔每层的一张图像使用不同参数做高斯模糊,使得金字塔的每层含有多张高斯模糊图像(分组,组里面的成员大小一样,但是模糊程度不同——但是按道理大小定了,模糊程度也定了,但是这里的模糊程度可以变,是为了体现连续性??),将金字塔每层多张图像合称为一组(Octave),金字塔每层只有一组图像,组数和金字塔层数相等,使用公式(3-3)计算,每组含有多张(也叫层Interval)图像。另外,降采样时,高斯金字塔上一组图像的初始图像(底层图像)是由前一组图像倒数第三张隔点采样得到的。(为什么是倒数第三张呢?这是因为为了利用大多数图像。在每次采样的时候都会在每幅图像的顶层继续用高斯模糊生成3张图,这样对于整个金字塔来讲,只牺牲了-1层的第一张图和第N层的最后一张图

注:由于组内的多张图像按层次叠放,因此组内的多张图像也称做多层,为避免与金字塔层的概念混淆,本文以下内容中,若不特别说明是金字塔层数,层一般指组内各层图像。

3.3高斯差分金字塔

2002年Mikolajczyk在详细的实验比较中发现尺度归一化的高斯拉普拉斯函数的极大值和极小值同其它的特征提取函数,例如:梯度,Hessian或Harris角特征比较,能够产生最稳定的图像特征。

而Lindeberg早在1994年就发现高斯差分函数(Difference of Gaussian ,简称DOG算子)与尺度归一化的高斯拉普拉斯函数非常近似。其中的关系可以从如下公式推导得到:

利用差分近似代替微分,则有:

                   

因此有

其中k-1是个常数,并不影响极值点位置的求取。

如图3.2所示,红色曲线表示的是高斯差分算子,而蓝色曲线表示的是高斯拉普拉斯算子。Lowe使用更高效的高斯差分算子代替拉普拉斯算子进行极值检测,如下:

(3-4)

在实际计算时,使用高斯金字塔每组中相邻上下两层图像相减,得到高斯差分图像,如图3.3所示,进行极值检测。

3.4 空间极值点检测(关键点的初步探查)

关键点是由DOG空间的局部极值点组成的,关键点的初步探查是通过同一组内各DoG相邻两层图像之间比较完成的。为了寻找DoG函数的极值点,每一个像素点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图3.4所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 

由于要在相邻尺度进行比较,如图3.3右侧每组含4层的高斯差分金子塔,只能在中间两层中进行两个尺度的极值点检测,其它尺度则只能在不同组中进行。为了在每组中检测S个尺度的极值点,则DOG金字塔每组需S+2层图像,而DOG金字塔由高斯金字塔相邻两层相减得到,则高斯金字塔每组需S+3层图像,实际计算时S35之间。

当然这样产生的极值点并不全都是稳定的特征点,因为某些极值点响应较弱,而且DOG算子会产生较强的边缘响应。

3.5 构建尺度空间需确定的参数

  —尺度空间坐标

    O—组(octave)

    S— 组内层数

在上述尺度空间中,O和S,的关系如下:

 (3-5)

其中是基准层尺度,o为组octave的索引,s为组内层的索引。关键点的尺度坐标就是按关键点所在的组和组内的层,利用公式(3-5)计算而来。

在最开始建立高斯金字塔时,要预先模糊输入图像来作为第0个组的第0层的图像,这时相当于丢弃了最高的空域的采样率。因此通常的做法是先将图像的尺度扩大一倍来生成第-1组。我们假定初始的输入图像为了抗击混淆现象,已经对其进行的高斯模糊,如果输入图像的尺寸用双线性插值扩大一倍,那么相当于

取式(3-4)中的k为组内总层数的倒数,即

   (3-6)

在构建高斯金字塔时,组内每层的尺度坐标按如下公式计算:

(3-7)

其中初始尺度,lowes为组内的层索引,不同组相同层的组内尺度坐标相同。组内下一层图像是由前一层图像按进行高斯模糊所得。式(3-7)用于一次生成组内不同尺度的高斯图像,而在计算组内某一层图像的尺度时,直接使用如下公式进行计算:

(3-8)

该组内尺度在方向分配和特征描述时确定采样窗口的大小。

由上,式(3-4)可记为

(3-9)

3.5为构建DOG金字塔的示意图,原图采用128*128jobs图像,扩大一倍后构建金字塔。

4、关键点定位

以上方法检测到的极值点是离散空间的极值点,以下通过拟合三维二次函数来精确确定关键点的位置和尺度,同时去除低对比度的关键点和不稳定的边缘响应点(因为DoG算子会产生较强的边缘响应),以增强匹配稳定性、提高抗噪声能力。

4.1关键点的精确定位

离散空间的极值点并不是真正的极值点,图4.1显示了二维函数离散空间得到的极值点与连续空间极值点(一个是实际求的,一个是理论求的,要对实际做处理,使其在理论上也通顺。)的差别。利用已知的离散空间点插值得到的连续空间极值点的方法叫做子像素插值(Sub-pixel Interpolation)。

为了提高关键点的稳定性,需要对尺度空间DoG函数进行曲线拟合。利用DoG函数在尺度空间的Taylor展开式(拟合函数)为:

(4-1)

其中,。求导并让方程等于零,可以得到极值点的偏移量为:

(4-2)

对应极值点,方程的值为:

(4-3)

公式4-1中两边的x不是代表的一个意思。其中左边的代表的是X+X0,右边的代表的是X0,因此通过对拟合曲线求导得到的才是偏移量

注意一点:就是离散和理论的结合

其中,代表相对插值中心的偏移量,当它在任一维度上的偏移量大于0.5时(即xy),意味着插值中心已经偏移到它的邻近点上,所以必须改变当前关键点的位置。同时在新的位置上反复插值直到收敛;也有可能超出所设定的迭代次数或者超出图像边界的范围,此时这样的点应该删除,在Lowe中进行了5次迭代。另外,过小的点易受噪声的干扰而变得不稳定,所以将小于某个经验值(Lowe论文中使用0.03Rob Hess

抱歉!评论已关闭.