现在的位置: 首页 > 综合 > 正文

多版本并发控制(MVCC)在分布式系统中的应用

2017年12月27日 ⁄ 综合 ⁄ 共 5651字 ⁄ 字号 评论关闭

from: http://coolshell.cn/articles/6790.html

from: http://baike.baidu.com/view/1887040.htm

问题

最近项目中遇到了一个分布式系统的并发控制问题。该问题可以抽象为:某分布式系统由一个数据中心D和若干业务处理中心L1,L2 … Ln组成;D本质上是一个key-value存储,它对外提供基于HTTP协议的CRUD操作接口。L的业务逻辑可以抽象为下面3个步骤:

  1. read: 根据keySet {k1, … kn}从D获取keyValueSet {k1:v1, … kn:vn}
  2. do: 根据keyValueSet进行业务处理,得到需要更新的数据集keyValueSet’ {k1′:v1′, … km’:vm’} (:读取的keySet和更新的keySet’可能不同)
  3. update: 把keyValueSet’更新到D (:D保证在一次调用更新多个key的原子性)

在没有事务支持的情况下,多个L进行并发处理可能会导致数据一致性问题。比如,考虑L1和L2的如下执行顺序:

  1. L1从D读取key:123对应的值100
  2. L2从D读取key:123对应的100
  3. L1将key:123更新为100 + 1
  4. L2将key:123更新为100 + 2

如果L1和L2串行执行,key:123对应的值将为103,但上面并发执行中L1的执行效果完全被L2所覆盖,实际key:123所对应的值变成了102。

解决方案1:基于锁的事务

为了让L的处理具有可串行化特性(Serializability),一种最直接的解决方案就是考虑为D加上基于锁的简单事务。让L在进行业务处理前先锁定D,完成以后释放锁。另外,为了防止持有锁的L由于某种原因长时间未提交事务,D还需要具有超时机制,当L尝试提交一个已超时的事务时会得到一个错误响应。

本方案的优点是实现简单,缺点是锁定了整个数据集,粒度太大;时间上包含了L的整个处理时间,跨度太长。虽然我们可以考虑把锁定粒度降低到数据项级别,按key进行锁定,但这又会带来其他的问题。由于更新的keySet’可能是事先不确定的,所以可能无法在开始事务时锁定所有的key;如果分阶段来锁定需要的key,又可能出现死锁(Deadlock)问题。另外,按key锁定在有锁争用的情况下并不能解决锁定时间太长的问题。所以,按key锁定仍然存在重要的不足之处。

解决方案2:多版本并发控制

为了实现可串行化,同时避免锁机制存在的各种问题,我们可以采用基于多版本并发控制(Multiversion concurrency control,MVCC)思想的无锁事务机制。人们一般把基于锁的并发控制机制称成为悲观机制,而把MVCC机制称为乐观机制。这是因为锁机制是一种预防性的,读会阻塞写,写也会阻塞读,当锁定粒度较大,时间较长时并发性能就不会太好;而MVCC是一种后验性的,读不阻塞写,写也不阻塞读,等到提交的时候才检验是否有冲突,由于没有锁,所以读写不会相互阻塞,从而大大提升了并发性能。我们可以借用源代码版本控制来理解MVCC,每个人都可以自由地阅读和修改本地的代码,相互之间不会阻塞,只在提交的时候版本控制器会检查冲突,并提示merge。目前,Oracle、PostgreSQL和MySQL都已支持基于MVCC的并发机制,但具体实现各有不同。

MVCC的一种简单实现是基于CAS(Compare-and-swap)思想的有条件更新(Conditional Update)。普通的update参数只包含了一个keyValueSet’,Conditional Update在此基础上加上了一组更新条件conditionSet { … data[keyx]=valuex, … },即只有在D满足更新条件的情况下才将数据更新为keyValueSet’;否则,返回错误信息。这样,L就形成了如下图所示的Try/Conditional Update/(Try again)的处理模式:

虽然对单个L来讲不能保证每次都成功更新,但从整个系统来看,总是有任务能够顺利进行。这种方案利用Conditional Update避免了大粒度和长时间的锁定,当各个业务之间资源争用不大的情况下,并发性能很好。不过,由于Conditional Update需要更多的参数,如果condition中value的长度很长,那么每次网络传送的数据量就会比较大,从而导致性能下降。特别是当需要更新的keyValueSet’很小,而condition很大时,就显得非常不经济。

为了避免condition太大所带来的性能问题,可以为每条数据项增加一个int型的版本号字段,由D维护该版本号,每次数据有更新就增加版本号;L在进行Conditional Update时,通过版本号取代具体的值。

另一个问题是上面的解决方案假设了D是可以支持Conditional Update的;那么,如果D是一个不支持Conditional Update的第三方的key-value存储怎么办呢?这时,我们可以在L和D之间增加一个P作为代理,所有的CRUD操作都必须经过P,让P来进行条件检查,而实际的数据操作放在D。这种方式实现了条件检查和数据操作的分离,但同时降低了性能,需要在P中增加cache,提升性能。由于P是D的唯一客户端;所以,P的cache管理是非常简单的,不必像多客户端情形担心缓存的失效。不过,实际上,据我所知redis和Amazon
SimpleDB都已经有了Conditional Update的支持。

悲观锁和MVCC对比

上面介绍了悲观锁和MVCC的基本原理,但是对于它们分别适用于什么场合,不同的场合下两种机制优劣具体表现在什么地方还不是很清楚。这里我就对一些典型的应用场景进行简单的分析。需要注意的是下面的分析不针对分布式,悲观锁和MVCC两种机制在分布式系统、单数据库系统、甚至到内存变量各个层次都存在。

### 场景1:对读的响应速度要求高

有一类系统更新特别频繁,并且对读的响应速度要求很高,如股票交易系统。在悲观锁机制下,写会阻塞读,那么当有写操作时,读操作的响应速度就会受到影响;而MVCC不存在读写锁,读操作是不受任何阻塞的,所以读的响应速度会更快更稳定。

### 场景2:读远多于写

对于许多系统来讲,读操作的比例往往远大于写操作,特别是某些海量并发读的系统。在悲观锁机制下,当有写操作占用锁,就会有大量的读操作被阻塞,影响并发性能;而MVCC可以保持比较高且稳定的读并发能力。

### 场景3:写操作冲突频繁

如果系统中写操作的比例很高,且冲突频繁,这时就需要仔细评估。假设两个有冲突的业务L1和L2,它们在单独执行是分别耗时t1,t2。在悲观锁机制下,它们的总时间大约等于串行执行的时间:

T = t1 + t2

而在MVCC下,假设L1在L2之前更新,L2需要retry一次,它们的总时间大约等于L2执行两次的时间(这里假设L2的两次执行耗时相等,更好的情况是,如果第1次能缓存下部分有效结果,第二次执行L2耗时是可能减小的):

T’ = 2 * t2

这时关键是要评估retry的代价,如果retry的代价很低,比如,对某个计数器递增,又或者第二次执行可以比第一次快很多,这时采用MVCC机制就比较适合。反之,如果retry的代价很大,比如,报表统计运算需要算几小时甚至一天那就应该采用锁机制避免retry。

从上面的分析,我们可以简单的得出这样的结论:对读的响应速度和并发性要求比较高的场景适合MVCC;而retry代价越大的场景越适合悲观锁机制。

总结

本文介绍了一种基于多版本并发控制(MVCC)思想的Conditional Update解决分布式系统并发控制问题的方法。和基于悲观锁的方法相比,该方法避免了大粒度和长时间的锁定,能更好地适应对读的响应速度和并发性要求高的场景。

MVCC

目录

MVCC

  Multi-Version Concurrency Control 多版本并发控制  大多数的MySQL事务型存储引擎,如InnoDB,Falcon以及PBXT都不使用一种简单的行锁机制。事实上,他们都和另外一种用来增加并发性的被称为“多版本并发控制(MVCC)”的机制来一直使用。MVCC不只使用在MySQL中,Oracle,PostgreSQL以及其他一些数据库系统也同样使用它。   你可将MVCC看成行级别锁的一种妥协,它在许多情况下避免了使用锁,同时可以提供更小的开销。根据实现的不同,它可以允许非阻塞式读,在写操作进行时只锁定必要的记录。
  MVCC会保存某个时间点上的数据快照。这意味阒事务可以看到一个一致的数据视图,不管他们需要跑多久。这同时也意味着不同的事务在同一个时间点看到的同一个表的数据可能是不同的。如果你从来没有过种体验的话,可能理解起来比较抽象,但是随着慢慢地熟悉这种理解将会很容易。   各个存储引擎对于MVCC的实现各不相同。这些不同中的一些包括乐观和悲观并发控制。我们将通过一个简化的InnoDB版本的行为来展示MVCC工作的一个侧面。   InnoDB:通过为每一行记录添加两个额外的隐藏的值来实现MVCC,这两个值一个记录这行数据何时被创建,另外一个记录这行数据何时过期(或者被删除)。但是InnoDB并不存储这些事件发生时的实际时间,相反它只存储这些事件发生时的系统版本号。这是一个随着事务的创建而不断增长的数字。每个事务在事务开始时会记录它自己的系统版本号。每个查询必须去检查每行数据的版本号与事务的版本号是否相同。让我们来看看当隔离级别是REPEATABLE
READ时这种策略是如何应用到特定的操作的:   SELECT InnoDB必须每行数据来保证它符合两个条件:   1、InnoDB必须找到一个行的版本,它至少要和事务的版本一样老(也即它的版本号不大于事务的版本号)。这保证了不管是事务开始之前,或者事务创建时,或者修改了这行数据的时候,这行数据是存在的。   2、这行数据的删除版本必须是未定义的或者比事务版本要大。这可以保证在事务开始之前这行数据没有被删除。   符合这两个条件的行可能会被当作查询结果而返回。   INSERT:InnoDB为这个新行记录当前的系统版本号。
  DELETE:InnoDB将当前的系统版本号设置为这一行的删除ID。   UPDATE:InnoDB会写一个这行数据的新拷贝,这个拷贝的版本为当前的系统版本号。它同时也会将这个版本号写到旧行的删除版本里。   这种额外的记录所带来的结果就是对于大多数查询来说根本就不需要获得一个锁。他们只是简单地以最快的速度来读取数据,确保只选择符合条件的行。这个方案的缺点在于存储引擎必须为每一行存储更多的数据,做更多的检查工作,处理更多的善后操作。   MVCC只工作在REPEATABLE READ和READ COMMITED隔离级别下。READ
UNCOMMITED不是MVCC兼容的,因为查询不能找到适合他们事务版本的行版本;它们每次都只能读到最新的版本。SERIABLABLE也不与MVCC兼容,因为读操作会锁定他们返回的每一行数据[1]

说明

  通过使用MVCC(Multi-Version Concurrency Control)算法自动提供并发控制。MVCC维持一个数据的多个版本使读写操作没有冲突。也就是说数据元素X上的每一个写操作产生X的一个新版本,GBase 8m为X的每一个读操作选择一个版本。由于消除了数据库中数据元素读和写操作的冲突,GBase 8m得到优化,具有更好的性能。特别是对于数据库读和写两种方法,他们不用等待其他同时进行的相同数据写和读的完成。在并发事务中,数据库写只等待正在对同一行数据进行更新的写,这是现有的行锁定方法的弱点。同时MVCC回收不需要的和长时间不用的内存,防止内存空间的浪费。MVCC优化了数据库并发系统,使系统在有大量并发用户时得到最高的性能,并且可以不用关闭服务器就直接进行热备份。

比锁定的优势

  使用MVCC多版本并发控制比锁定模型的主要优点是在MVCC里, 对检索(读)数据的锁要求与写数据的锁要求不冲突, 所以读不会阻塞写,而写也从不阻塞读。  在数据库里也有表和行级别的锁定机制, 用于给那些无法轻松接受 MVCC 行为的应用。 不过,恰当地使用 MVCC 总会提供比锁更好地性能。

GBase8的特性

  在 GBase 中的查询功能通过 MVCC 提供的一致性非锁读(在下文我们简称为一致性读),就是提供通过数据库在一个时间点上的快照来实现信息的查询。查询只是对那些在这个时间点之前提交的事务所做的变更,而并不关注在时间点之后的变更或未提交的事务。当然,若是该事务自身进行的变更,对于查询是可见的。  GBase 的默认级别是 READ COMMITTED ,在该隔离级别下事务中的查询语句,使用当前时间戳进行一致性读,每次查询的时间戳是不相同的。  但对 REPEATABLE READ 隔离级别,在同一个事务中的所有一致性读,使用的时间戳均是第一个查询的时间戳,这样读取的也就是由该事务第一次读建立起来的数据快照。用户只有通过提交当前事务,并发出一个新的查询才会得到新的数据快照。  一致性读是
GBase 在 READ COMMITTED 和 REPEATABLE READ 隔离级别下,处理 SELECT 语句中使用的默认模式。一致性读在它读的数据上不设置任何锁,因此在一致性读某个表的同时,其它用户均可以修改这个表。  注意在 DROP TABLE 和 ALTER TABLE 运作时,一致性读无效 。一致性读在 DROP TABLE 上无效是因为 GBase 不能使用已经 drop 的表,该表已经删除。一致性读在 ALTER TABLE 上无效是因为 GBase 会在事务内,重新创建一个新表并从旧表向新表插入记录。这样当用户再次执行一致性读时,在新表中将看不到任何行,因为在新表中的数据都在第一次一致性读的快照之外。

抱歉!评论已关闭.