现在的位置: 首页 > 综合 > 正文

Linux 内核中工作队列的操作

2018年02月07日 ⁄ 综合 ⁄ 共 13956字 ⁄ 字号 评论关闭

工作队列(workqueue)的Linux内核中的定义的用来处理不是很紧急事件的回调方式处理方法.

  以下代码的linux内核版本为2.6.19.2, 源代码文件主要为kernel/workqueue.c.

  2. 数据结构

  /* include/linux/workqueue.h */
  // 工作节点结构
  struct work_struct {
  // 等待时间
  unsigned long pending;
  // 链表节点
  struct list_head entry;
  // workqueue回调函数
  void (*func)(void *);
  // 回调函数func的数据
  void *data;
  // 指向CPU相关数据, 一般指向struct cpu_workqueue_struct结构
  void *wq_data;
  // 定时器
  struct timer_list timer;
  };
  struct execute_work {
  struct work_struct work;
  };
  /* kernel/workqueue.c */
  /*
  * The per-CPU workqueue (if single thread, we always use the first
  * possible cpu).
  *
  * The sequence counters are for flush_scheduled_work(). It wants to wait
  * until all currently-scheduled works are completed, but it doesn't
  * want to be livelocked by new, incoming ones. So it waits until
  * remove_sequence is >= the insert_sequence which pertained when
  * flush_scheduled_work() was called.
  */
  // 这个结构是针对每个CPU的
  struct cpu_workqueue_struct {
  // 结构锁
  spinlock_t lock;
  // 下一个要执行的节点序号
  long remove_sequence; /* Least-recently added (next to run) */
  // 下一个要插入节点的序号
  long insert_sequence; /* Next to add */
  // 工作机构链表节点
  struct list_head worklist;
  // 要进行处理的等待队列
  wait_queue_head_t more_work;
  // 处理完的等待队列
  wait_queue_head_t work_done;
  // 工作队列节点
  struct workqueue_struct *wq;
  // 进程指针
  struct task_struct *thread;
  int run_depth; /* Detect run_workqueue() recursion depth */
  } ____cacheline_aligned;
  /*
  * The externally visible workqueue abstraction is an array of
  * per-CPU workqueues:
  */
  // 工作队列结构
  struct workqueue_struct {
  struct cpu_workqueue_struct *cpu_wq;
  const char *name;
  struct list_head list; /* Empty if single thread */
  };

   

kernel/workqueue.c中定义了一个工作队列链表, 所有工作队列可以挂接到这个链表中:

  static LIST_HEAD(workqueues);

  3. 一些宏定义

  /* include/linux/workqueue.h */
  // 初始化工作队列
  #define __WORK_INITIALIZER(n, f, d) {
  // 初始化list
  .entry = { &(n).entry, &(n).entry },
  // 回调函数
  .func = (f),
  // 回调函数参数
  .data = (d),
  // 初始化定时器
  .timer = TIMER_INITIALIZER(NULL, 0, 0),
  }
  // 声明工作队列并初始化
  #define DECLARE_WORK(n, f, d)
  struct work_struct n = __WORK_INITIALIZER(n, f, d)
  /*
  * initialize a work-struct's func and data pointers:
  */
  // 重新定义工作结构参数
  #define PREPARE_WORK(_work, _func, _data)
  do {
  (_work)->func = _func;
  (_work)->data = _data;
  } while (0)
  /*
  * initialize all of a work-struct:
  */
  // 初始化工作结构, 和__WORK_INITIALIZER功能相同,不过__WORK_INITIALIZER用在
  // 参数初始化定义, 而该宏用在程序之中对工作结构赋值
  #define INIT_WORK(_work, _func, _data)
  do {
  INIT_LIST_HEAD(&(_work)->entry);
  (_work)->pending = 0;
  PREPARE_WORK((_work), (_func), (_data));
  init_timer(&(_work)->timer);
  } while (0)

  4. 操作函数

4.1 创建工作队列

  一般的创建函数是create_workqueue, 但这其实只是一个宏:

  /* include/linux/workqueue.h */

  #define create_workqueue(name) __create_workqueue((name), 0)

  在workqueue的初始化函数中, 定义了一个针对内核中所有线程可用的事件工作队列, 其他内核线程建立的事件工作结构就都挂接到该队列:

  void init_workqueues(void)
  {
  ...
  keventd_wq = create_workqueue("events");
  ...
  }

  核心创建函数是__create_workqueue:

  struct workqueue_struct *__create_workqueue(const char *name,
  int singlethread)
  {
  int cpu, destroy = 0;
  struct workqueue_struct *wq;
  struct task_struct *p;
  // 分配工作队列结构空间
  wq = kzalloc(sizeof(*wq), GFP_KERNEL);
  if (!wq)
  return NULL;
  // 为每个CPU分配单独的工作队列空间
  wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
  if (!wq->cpu_wq) {
  kfree(wq);
  return NULL;
  }
  wq->name = name;
  mutex_lock(&workqueue_mutex);
  if (singlethread) {
  // 使用create_workqueue宏时该参数始终为0
  // 如果是单一线程模式, 在单线程中调用各个工作队列
  // 建立一个的工作队列内核线程
  INIT_LIST_HEAD(&wq->list);
  // 建立工作队列的线程
  p = create_workqueue_thread(wq, singlethread_cpu);
  if (!p)
  destroy = 1;
  else
  // 唤醒该线程
  wake_up_process(p);
  } else {
  // 链表模式, 将工作队列添加到工作队列链表
  list_add(&wq->list, &workqueues);
  // 为每个CPU建立一个工作队列线程
  for_each_online_cpu(cpu) {
  p = create_workqueue_thread(wq, cpu);
  if (p) {
  // 绑定CPU
  kthread_bind(p, cpu);
  // 唤醒线程
  wake_up_process(p);
  } else
  destroy = 1;
  }
  }
  mutex_unlock(&workqueue_mutex);
  /*
  * Was there any error during startup? If yes then clean up:
  */
  if (destroy) {
  // 建立线程失败, 释放工作队列
  destroy_workqueue(wq);
  wq = NULL;
  }
  return wq;
  }
  EXPORT_SYMBOL_GPL(__create_workqueue);
  // 创建工作队列线程
  static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
  int cpu)
  {
  // 每个CPU的工作队列
  struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
  struct task_struct *p;
  spin_lock_init(&cwq->lock);
  // 初始化
  cwq->wq = wq;
  cwq->thread = NULL;
  cwq->insert_sequence = 0;
  cwq->remove_sequence = 0;
  INIT_LIST_HEAD(&cwq->worklist);
  // 初始化等待队列more_work, 该队列处理要执行的工作结构
  init_waitqueue_head(&cwq->more_work);
  // 初始化等待队列work_done, 该队列处理执行完的工作结构
  init_waitqueue_head(&cwq->work_done);
  // 建立内核线程work_thread
  if (is_single_threaded(wq))
  p = kthread_create(worker_thread, cwq, "%s", wq->name);
  else
  p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
  if (IS_ERR(p))
  return NULL;
  // 保存线程指针
  cwq->thread = p;
  return p;
  }
  static int worker_thread(void *__cwq)
  {
  struct cpu_workqueue_struct *cwq = __cwq;
  // 声明一个等待队列
  DECLARE_WAITQUEUE(wait, current);
  // 信号
  struct k_sigaction sa;
  sigset_t blocked;
  current->flags |= PF_NOFREEZE;
  // 降低进程优先级, 工作进程不是个很紧急的进程,不和其他进程抢占CPU,通常在系统空闲时运行
  set_user_nice(current, -5);
  /* Block and flush all signals */
  // 阻塞所有信号
  sigfillset(&blocked);
  sigprocmask(SIG_BLOCK, &blocked, NULL);
  flush_signals(current);
  /*
  * We inherited MPOL_INTERLEAVE from the booting kernel.
  * Set MPOL_DEFAULT to insure node local allocations.
  */
  numa_default_policy();
  /* SIG_IGN makes children autoreap: see do_notify_parent(). */
  // 信号处理都是忽略
  sa.sa.sa_handler = SIG_IGN;
  sa.sa.sa_flags = 0;
  siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
  do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
  // 进程可中断
  set_current_state(TASK_INTERRUPTIBLE);
  // 进入循环, 没明确停止该进程就一直运行
  while (!kthread_should_stop()) {
  // 设置more_work等待队列, 当有新work结构链入队列中时会激发此等待队列
  add_wait_queue(&cwq->more_work, &wait);
  if (list_empty(&cwq->worklist))
  // 工作队列为空, 睡眠
  schedule();
  else
  // 进行运行状态
  __set_current_state(TASK_RUNNING);
  // 删除等待队列
  remove_wait_queue(&cwq->more_work, &wait);
  // 按链表遍历执行工作任务
  if (!list_empty(&cwq->worklist))
  run_workqueue(cwq);
  // 执行完工作, 设置进程是可中断的, 重新循环等待工作
  set_current_state(TASK_INTERRUPTIBLE);
  }
  __set_current_state(TASK_RUNNING);
  return 0;
  }
  // 运行工作结构
  static void run_workqueue(struct cpu_workqueue_struct *cwq)
  {
  unsigned long flags;
  /*
  * Keep taking off work from the queue until
  * done.
  */
  // 加锁
  spin_lock_irqsave(&cwq->lock, flags);
  // 统计已经递归调用了多少次了
  cwq->run_depth++;
  if (cwq->run_depth > 3) {
  // 递归调用此时太多
  /* morton gets to eat his hat */
  printk("%s: recursion depth exceeded: %d
",
  __FUNCTION__, cwq->run_depth);
  dump_stack();
  }
  // 遍历工作链表
  while (!list_empty(&cwq->worklist)) {
  // 获取的是next节点的
  struct work_struct *work = list_entry(cwq->worklist.next,
  struct work_struct, entry);
  void (*f) (void *) = work->func;
  void *data = work->data;
  // 删除节点, 同时节点中的list参数清空
  list_del_init(cwq->worklist.next);
  // 解锁
  // 现在在执行以下代码时可以中断,run_workqueue本身可能会重新被调用, 所以要判断递归深度
  spin_unlock_irqrestore(&cwq->lock, flags);
  BUG_ON(work->wq_data != cwq);
  // 工作结构已经不在链表中
  clear_bit(0, &work->pending);
  // 执行工作函数
  f(data);
  // 重新加锁
  spin_lock_irqsave(&cwq->lock, flags);
  // 执行完的工作序列号递增
  cwq->remove_sequence++;
  // 唤醒工作完成等待队列, 供释放工作队列
  wake_up(&cwq->work_done);
  }
  // 减少递归深度
  cwq->run_depth--;
  // 解锁
  spin_unlock_irqrestore(&cwq->lock, flags);
  }

    4.2 释放工作队列  /**
  * destroy_workqueue - safely terminate a workqueue
  * @wq: target workqueue
  *
  * Safely destroy a workqueue. All work currently pending will be done first.
  */
  void destroy_workqueue(struct workqueue_struct *wq)
  {
  int cpu;
  // 清除当前工作队列中的所有工作
  flush_workqueue(wq);
  /* We don't need the distraction of CPUs appearing and vanishing. */
  mutex_lock(&workqueue_mutex);
  // 结束该工作队列的线程
  if (is_single_threaded(wq))
  cleanup_workqueue_thread(wq, singlethread_cpu);
  else {
  for_each_online_cpu(cpu)
  cleanup_workqueue_thread(wq, cpu);
  list_del(&wq->list);
  }
  mutex_unlock(&workqueue_mutex);
  // 释放工作队列中对应每个CPU的工作队列数据
  free_percpu(wq->cpu_wq);
  kfree(wq);
  }
  EXPORT_SYMBOL_GPL(destroy_workqueue);
  /**
  * flush_workqueue - ensure that any scheduled work has run to completion.
  * @wq: workqueue to flush
  *
  * Forces execution of the workqueue and blocks until its completion.
  * This is typically used in driver shutdown handlers.
  *
  * This function will sample each workqueue's current insert_sequence number and
  * will sleep until the head sequence is greater than or equal to that. This
  * means that we sleep until all works which were queued on entry have been
  * handled, but we are not livelocked by new incoming ones.
  *
  * This function used to run the workqueues itself. Now we just wait for the
  * helper threads to do it.
  */
  void fastcall flush_workqueue(struct workqueue_struct *wq)
  {
  // 该进程可以睡眠
  might_sleep();
  // 清空每个CPU上的工作队列
  if (is_single_threaded(wq)) {
  /* Always use first cpu's area. */
  flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
  } else {
  int cpu;
  mutex_lock(&workqueue_mutex);
  for_each_online_cpu(cpu)
  flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
  mutex_unlock(&workqueue_mutex);
  }
  }
  EXPORT_SYMBOL_GPL(flush_workqueue);
  flush_workqueue的核心处理函数为flush_cpu_workqueue:
  static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
  {
  if (cwq->thread == current) {
  // 如果是工作队列进程正在被调度
  /*
  * Probably keventd trying to flush its own queue. So simply run
  * it by hand rather than deadlocking.
  */
  // 执行完该工作队列
  run_workqueue(cwq);
  } else {
  // 定义等待
  DEFINE_WAIT(wait);
  long sequence_needed;
  // 加锁
  spin_lock_irq(&cwq->lock);
  // 最新工作结构序号
  sequence_needed = cwq->insert_sequence;
  // 该条件是判断队列中是否还有没有执行的工作结构
  while (sequence_needed - cwq->remove_sequence > 0) {
  // 有为执行的工作结构
  // 通过work_done等待队列等待
  prepare_to_wait(&cwq->work_done, &wait,
  TASK_UNINTERRUPTIBLE);
  // 解锁
  spin_unlock_irq(&cwq->lock);
  // 睡眠, 由wake_up(&cwq->work_done)来唤醒
  schedule();
  // 重新加锁
  spin_lock_irq(&cwq->lock);
  }
  // 等待清除
  finish_wait(&cwq->work_done, &wait);
  spin_unlock_irq(&cwq->lock);
  }
  }

   

4.3 调度工作

  在大多数情况下, 并不需要自己建立工作队列,而是只定义工作, 将工作结构挂接到内核预定义的事件工作队列中调度, 在kernel/workqueue.c中定义了一个静态全局量的工作队列keventd_wq:

  static struct workqueue_struct *keventd_wq;

  4.3.1 立即调度

  // 在其他函数中使用以下函数来调度工作结构, 是把工作结构挂接到工作队列中进行调度
  /**
  * schedule_work - put work task in global workqueue
  * @work: job to be done
  *
  * This puts a job in the kernel-global workqueue.
  */
  // 调度工作结构, 将工作结构添加到事件工作队列keventd_wq
  int fastcall schedule_work(struct work_struct *work)
  {
  return queue_work(keventd_wq, work);
  }
  EXPORT_SYMBOL(schedule_work);
  /**
  * queue_work - queue work on a workqueue
  * @wq: workqueue to use
  * @work: work to queue
  *
  * Returns 0 if @work was already on a queue, non-zero otherwise.
  *
  * We queue the work to the CPU it was submitted, but there is no
  * guarantee that it will be processed by that CPU.
  */
  int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
  {
  int ret = 0, cpu = get_cpu();
  if (!test_and_set_bit(0, &work->pending)) {
  // 工作结构还没在队列, 设置pending标志表示把工作结构挂接到队列中
  if (unlikely(is_single_threaded(wq)))
  cpu = singlethread_cpu;
  BUG_ON(!list_empty(&work->entry));
  // 进行具体的排队
  __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
  ret = 1;
  }
  put_cpu();
  return ret;
  }
  EXPORT_SYMBOL_GPL(queue_work);
  /* Preempt must be disabled. */
  // 不能被抢占
  static void __queue_work(struct cpu_workqueue_struct *cwq,
  struct work_struct *work)
  {
  unsigned long flags;
  // 加锁
  spin_lock_irqsave(&cwq->lock, flags);
  // 指向CPU工作队列
  work->wq_data = cwq;
  // 挂接到工作链表
  list_add_tail(&work->entry, &cwq->worklist);
  // 递增插入的序列号
  cwq->insert_sequence++;
  // 唤醒等待队列准备处理工作结构
  wake_up(&cwq->more_work);
  spin_unlock_irqrestore(&cwq->lock, flags);
  }

   

4.3.2 延迟调度

  4.3.2.1 schedule_delayed_work

  /**
  * schedule_delayed_work - put work task in global workqueue after delay
  * @work: job to be done
  * @delay: number of jiffies to wait
  *
  * After waiting for a given time this puts a job in the kernel-global
  * workqueue.
  */
  // 延迟调度工作, 延迟一定时间后再将工作结构挂接到工作队列
  int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
  {
  return queue_delayed_work(keventd_wq, work, delay);
  }
  EXPORT_SYMBOL(schedule_delayed_work);
  /**
  * queue_delayed_work - queue work on a workqueue after delay
  * @wq: workqueue to use
  * @work: work to queue
  * @delay: number of jiffies to wait before queueing
  *
  * Returns 0 if @work was already on a queue, non-zero otherwise.
  */
  int fastcall queue_delayed_work(struct workqueue_struct *wq,
  struct work_struct *work, unsigned long delay)
  {
  int ret = 0;
  // 定时器, 此时的定时器应该是不起效的, 延迟将通过该定时器来实现
  struct timer_list *timer = &work->timer;
  if (!test_and_set_bit(0, &work->pending)) {
  // 工作结构还没在队列, 设置pending标志表示把工作结构挂接到队列中
  // 如果现在定时器已经起效, 出错
  BUG_ON(timer_pending(timer));
  // 工作结构已经挂接到链表, 出错
  BUG_ON(!list_empty(&work->entry));
  /* This stores wq for the moment, for the timer_fn */
  // 保存工作队列的指针
  work->wq_data = wq;
  // 定时器初始化
  timer->expires = jiffies + delay;
  timer->data = (unsigned long)work;
  // 定时函数
  timer->function = delayed_work_timer_fn;
  // 定时器生效, 定时到期后再添加到工作队列
  add_timer(timer);
  ret = 1;
  }
  return ret;
  }
  EXPORT_SYMBOL_GPL(queue_delayed_work);
  // 定时中断函数
  static void delayed_work_timer_fn(unsigned long __data)
  {
  struct work_struct *work = (struct work_struct *)__data;
  struct workqueue_struct *wq = work->wq_data;
  // 获取CPU
  int cpu = smp_processor_id();
  if (unlikely(is_single_threaded(wq)))
  cpu = singlethread_cpu;
  // 将工作结构添加到工作队列,注意这是在时间中断调用
  __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
  }

   

4.3.2.2 schedule_delayed_work_on

  指定CPU的延迟调度工作结构, 和schedule_delayed_work相比增加了一个CPU参数, 其他都相同

  /**
  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
  * @cpu: cpu to use
  * @work: job to be done
  * @delay: number of jiffies to wait
  *
  * After waiting for a given time this puts a job in the kernel-global
  * workqueue on the specified CPU.
  */
  int schedule_delayed_work_on(int cpu,
  struct work_struct *work, unsigned long delay)
  {
  return queue_delayed_work_on(cpu, keventd_wq, work, delay);
  }
  /**
  * queue_delayed_work_on - queue work on specific CPU after delay
  * @cpu: CPU number to execute work on
  * @wq: workqueue to use
  * @work: work to queue
  * @delay: number of jiffies to wait before queueing
  *
  * Returns 0 if @work was already on a queue, non-zero otherwise.
  */
  int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  struct work_struct *work, unsigned long delay)
  {
  int ret = 0;
  struct timer_list *timer = &work->timer;
  if (!test_and_set_bit(0, &work->pending)) {
  BUG_ON(timer_pending(timer));
  BUG_ON(!list_empty(&work->entry));
  /* This stores wq for the moment, for the timer_fn */
  work->wq_data = wq;
  timer->expires = jiffies + delay;
  timer->data = (unsigned long)work;
  timer->function = delayed_work_timer_fn;
  add_timer_on(timer, cpu);
  ret = 1;
  }
  return ret;
  }
  EXPORT_SYMBOL_GPL(queue_delayed_work_on);

  5. 结论

  工作队列和定时器函数处理有点类似, 都是执行一定的回调函数, 但和定时器处理函数不同的是定时器回调函数只执行一次, 而且执行定时器回调函数的时候是在时钟中断中, 限制比较多, 因此回调程序不能太复杂; 而工作队列是通过内核线程实现, 一直有效, 可重复执行, 由于执行时降低了线程的优先级, 执行时可能休眠, 因此工作队列处理的应该是那些不是很紧急的任务, 如垃圾回收处理等, 通常在系统空闲时执行,在xfrm库中就广泛使用了workqueue,使用时,只需要定义work结构,然后调用schedule_(delayed_)work即可。

抱歉!评论已关闭.