现在的位置: 首页 > 综合 > 正文

指针与linux内核链表

2018年04月17日 ⁄ 综合 ⁄ 共 3401字 ⁄ 字号 评论关闭

1、指针:

如何分析**ptr:a、*(*ptr)   b、*ptr把ptr当成地址,访问ptr地址的内容

2、malloc:malloc申请的内存空间(即使是在函数内部申请)会一直存在,直到调用free释放


3、linux内核链表

链表数据结构的定义很简单(include/linux/list.h):

struct list_head {
	struct list_head *next, *prev;
};

在Linux内核链表中,需要用链表组织起来的数据通常会包含一个struct list_head成员例如在[include/linux/netfilter.h]中定义了一个nf_sockopt_ops结构来描述Netfilter为某一协议族准备的getsockopt/setsockopt接口,其中就有一个(struct
list_head list)成员,各个协议族的nf_sockopt_ops结构都通过这个list成员组织在一个链表中,表头是定义在[net/core/netfilter.c]中的nf_sockopts(struct list_head)。
从下图中我们可以看到,这种通用的链表结构避免了为每个数据项类型定义自己的链表的麻烦。Linux的简捷实用、不求完美和标准的风格,在这里体现得相当充分。

图3 nf_sockopts链表示意图

图3 nf_sockopts链表示意图


1. 声明和初始化

#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) struct list_head name = LIST_HEAD_INIT(name)

当我们用LIST_HEAD(nf_sockopts)声明一个名为nf_sockopts的链表头时,它的next、prev指针都初始化为指向自己;

2. 插入/删除/合并

a) 插入

假设有一个新nf_sockopt_ops结构变量new_sockopt需要添加到nf_sockopts链表头,我们应当这样操作:

list_add(&new_sockopt.list, &nf_sockopts);

当我们需要删除nf_sockopts链表中添加的new_sockopt项时,我们这么操作:

list_del(&new_sockopt.list);

3. 遍历

遍历是链表最经常的操作之一,为了方便核心应用遍历链表,Linux链表将遍历操作抽象成几个宏。在介绍遍历宏之前,我们先看看如何从链表中访问到我们真正需要的数据项。

a) 由链表节点到数据项变量

我们知道,Linux链表中仅保存了数据项结构中list_head成员变量的地址,那么我们如何通过这个list_head成员访问到作为它的所有者的节点数据呢?Linux为此提供了一个list_entry(ptr,type,member)宏,其中ptr是指向该数据中list_head成员的指针,也就是存储在链表中的地址值,type是数据项的类型,member则是数据项类型定义中list_head成员的变量名,例如,我们要访问nf_sockopts链表中首个nf_sockopt_ops变量,则如此调用:

list_entry(nf_sockopts->next, struct nf_sockopt_ops, list);

这里"list"正是nf_sockopt_ops结构中定义的用于链表操作的节点成员变量名。

list_entry的使用相当简单,相比之下,它的实现则有一些难懂:

#define list_entry(ptr, type, member) container_of(ptr, type, member)
container_of宏定义在[include/linux/kernel.h]中:
#define container_of(ptr, type, member) ({			\
        const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
        (type *)( (char *)__mptr - offsetof(type,member) );})
offsetof宏定义在[include/linux/stddef.h]中:
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

size_t最终定义为unsigned int(i386)。

这里使用的是一个利用编译器技术的小技巧,即先求得结构成员在与结构中的偏移量,然后根据成员变量的地址反过来得出属主结构变量的地址。

container_of()和offsetof()并不仅用于链表操作,这里最有趣的地方是((type *)0)->member,它将0地址强制"转换"为type结构的指针,再访问到type结构中的member成员。在container_of宏中,它用来给typeof()提供参数(typeof()是gcc的扩展,和sizeof()类似),以获得member成员的数据类型;在offsetof()中,这个member成员的地址实际上就是type数据结构中member成员相对于结构变量的偏移量。

如果这么说还不好理解的话,不妨看看下面这张图:

图5 offsetof()宏的原理

图5 offsetof()宏的原理

对于给定一个结构,offsetof(type,member)是一个常量,list_entry()正是利用这个不变的偏移量来求得链表数据项的变量地址。

b) 遍历宏

在[net/core/netfilter.c]的nf_register_sockopt()函数中有这么一段话:

		……
struct list_head *i;
……
	list_for_each(i, &nf_sockopts) {
		struct nf_sockopt_ops *ops = (struct nf_sockopt_ops *)i;
		……
	}
	……

函数首先定义一个(struct list_head *)指针变量i,然后调用list_for_each(i,&nf_sockopts)进行遍历。在[include/linux/list.h]中,list_for_each()宏是这么定义的:

        	#define list_for_each(pos, head) \
	for (pos = (head)->next, prefetch(pos->next); pos != (head); \
        	pos = pos->next, prefetch(pos->next))

它实际上是一个for循环,利用传入的pos作为循环变量,从表头head开始,逐项向后(next方向)移动pos,直至又回到head(prefetch()可以不考虑,用于预取以提高遍历速度)。

那么在nf_register_sockopt()中实际上就是遍历nf_sockopts链表。为什么能直接将获得的list_head成员变量地址当成struct nf_sockopt_ops数据项变量的地址呢?我们注意到在struct nf_sockopt_ops结构中,list是其中的第一项成员,因此,它的地址也就是结构变量的地址。更规范的获得数据变量地址的用法应该是:

struct nf_sockopt_ops *ops = list_entry(i, struct nf_sockopt_ops, list);

大多数情况下,遍历链表的时候都需要获得链表节点数据项,也就是说list_for_each()和list_entry()总是同时使用。对此Linux给出了一个list_for_each_entry()宏:

#define list_for_each_entry(pos, head, member)		……

与list_for_each()不同,这里的pos是数据项结构指针类型,而不是(struct list_head *)。nf_register_sockopt()函数可以利用这个宏而设计得更简单:

……
struct nf_sockopt_ops *ops;
list_for_each_entry(ops,&nf_sockopts,list){
	……
}
……

某些应用需要反向遍历链表,Linux提供了list_for_each_prev()和list_for_each_entry_reverse()来完成这一操作,使用方法和上面介绍的list_for_each()、list_for_each_entry()完全相同。




抱歉!评论已关闭.