现在的位置: 首页 > 综合 > 正文

Volatility and ARCH Models

2018年10月22日 ⁄ 综合 ⁄ 共 15209字 ⁄ 字号 评论关闭

------Dr. Junsoo Lee 

Why Volatility clustering?  What are the issues?

·        Time varying risk premia

·        Heteroskedastic variance

o   not constant variance

·        News arrivals are serially (auto) correlated.

o   News tends to cluster in time.

 

·        Asymmetric reactions (leverage effects):

o   “People react more when prices fall.”

·        Non-linearity in the model

o   Time deformation (economic activity does not match calendar time)

 

·        Leptokurtic distribution

o   Fat-tails and excess peakness at the mean

 

Volatility Models

1.     Moving Average Models

m-day historic volatility estimate

          2 = rt-i2

            where rt-i  is the m most recent returns

          rt = Dlog(Pt) = log(Pt) - log(Pt-1) : first difference of the price

                   data  = growth rates of price

Questions:

 

o   How to determine m?

o   Equal weights for each term, rt-i2?

o   Could we lose valuable information by smoothing out the series?

 

 

2.  Exponentially Weighted Moving Averages (EWMA)

                           2 = a rt-12 + (1 - a)
2

                   = a (1 - a)i-1 rt-i2

 

Note: This is the same as exponential smoothing method

          (except that yt is replaced with rt-12).

                        Recall from Lecture 3:

                    t  =  a yt-1 + (1 - a) t-1

                                    t-1= a yt-2 + (1 - a)
t-2

t-2= a yt-3 + (1 - a) t-3

                                         = a yt-1 + (1-a)ayt-2
+ (1-a)2ayt-3+

                                                 …..  +          (1-a)kayt-k+1

            Similarly,

                     2 = (1-l) li-1rt-i2    (with l = 1-a)

Remarks:

 

o   If a = 1, it’s a naive model for volatility with rt-12.

o   If a is close to 1, recent values of rt-i2 are heavily weighted.

o   The predicted volatility remains constant as the estimate at T.

 

 

3.     Auto-Regressive Conditional Heteroskedasticity (ARCH) Models

 

          “Express ut2 in terms of past values of ut2 (lagged squared residuals).”

 

                   ut2 = w + a1ut-12 + … + aqut-q2            (no error term!)

 

(1) Mean Equation: Usual ARMA models or others

                        The Model Explaining "Y" (the "mean" equation):

        yt = c + f yt-1 + ut     ..  AR(1) model, for instance

       Var(ut | Wt-1 ) = ht  
   .. conditional variance of ut

           whereWt-1 is the information set available at t-1.

(2) Variance Equation: ARCH(Q) equation

 

               The Model Explaining the Conditional Variance:

 

                        ht = w + a1ut-12 + … + aqut-q2

 

   ® These two equations consist of an AR(1)-ARCH(Q) model!

         [AR(1) Mean & ARCH(Q) Variance equations]

    

     More examples:

    

          ARCH(2): ht = w + a1ut-12 + a2ut-22

          ARCH(3): ht = w + a1ut-12 + a2ut-22  
+ a3ut-32

 

4.  GARCH (Generalized ARCH) Models      

 

     Additionally include lagged variance terms, ht-j, j=1,..,P.

 

          GARCH(P, Q):     ht = w + a1ut-12 +  … + aqut-q2

                                                 + b1ht-1  + ….  + bpht-p 

 

Note: People often use GARCH (1,1) models, without having to search for optimal models.

 

          GARCH(1, 1):      ht = w + a1ut-12 + b1ht-1

 

    

A complete specification of the AR(1)-GARCH(1,1) model, for example:

    

           yt = c + f yt-1 + ut     ..  AR(1) model, for instance

                 Var(ut | Wt-1 ) = ht  
   .. conditional variance of ut

 

          ht = w + a1ut-12 + b1 ht-1  ... GARCH(1,1), for instance

 

     More examples:

 

          GARCH(1, 2):      ht = w + a1ut-12 + a2ut-22 + b1ht-1

          GARCH(2, 1):      ht = w + a1ut-12 + b1ht-1
+ b2ht-2

 

  Summary Questions:

1.     Why conditional?

2.     Time-varying volatility?  Non-Constant variance?

3.     Time-varying risk premia?

4.     Is Volatility AUTO-CORRELATED?

5.     Can we estimate/forecast the time-varying volatility?

 

Estimating ARCH-GARCH Models

 

Main questions (as you may expect from ARMA models)

·        How to choose P and Q?

·        Testing for ARCH effects?

·        It is a non-linear model, so how to estimate it?

 

Choosing P and Q

 

·        Look at the ACF and PACF of squared residuals, ut2 of the ARMA model (see Case Study)

·        Ljung-Box Q2(m) statistics using ut2.

·        AIC / SBC (can be practical!)

·        Your call: say, GARCH(1,1)

 

Note: If your GARCH model is optimal, the resulting squared residuals from GARCH models should look like a white noise process.

      

     (ACF/PACF of ut2lie within the band; Q2(m) statistics; other tests)

 

Testing for ARCH effects

      LM test for ARCH effects.         

 

          From          ht = w + a1ut-12 +  … + aqut-q2
, we can have

                   H0:  a1 = a2 = … = aq = 0.

                        Then, ht = w (constant!)

          Thus, the testing hypothesis is

                   H0:  a1 = a2 = … = aq = 0  (no ARCH effects)

          1st.  Run the usual ARMA models, and obtain the residual
t (t2).

          2nd.  Regress t2 on t-12,
t-22, …, t-q2

      

                   t2 = c + c1t-12
+ c2t-22 +   + cqt-q2 + error

                   LM  = T R2 ~   cq  (chi-square with d.f. q.)

                   “Reject the null of no ARCH effects if LM > critical values.”

 

(i)    It is important to test on the residuals from the mean equation (ARMA models), not from GARCH models.

 

(ii)  We do not test directly for GARCH effects.  If ARCH effects exist, GARCH models can be also considered

 

Estimating GARCH models

 

Estimating GARCH models

 

We use the Maximum likelihood Estimation (MLE), since the GARCH model is non-linear.  Using iterative algorithm such as BHHH or others, we search for optimal parameter values while maximizing the log likelihood function:

 

     Log Lik = log f(yi|Wt-1)   where f(.) is the density function.

 

All details can be skipped..

 

EXAMPLE (SAS code):

 

FILENAME INDATA 'INFLATION.XLS';

PROC IMPORT OUT= WORK.INFLATION

            DATAFILE= INDATA DBMS=EXCEL2000 REPLACE;

     GETNAMES=YES;

RUN;

 

   PROC AUTOREG;

     MODEL Y = YLAG / ARCHTEST   GARCH=(q=1, p=1);

   RUN;

SAS OUTPUT:

 

The AUTOREG Procedure

 

                                     Dependent Variable    Y

 

                                 Ordinary Least Squares Estimates

 

                  SSE                  596.02691    DFE                      162

                  MSE                    3.67918    Root MSE             1.91812

                  SBC                 687.240352    AIC               681.040619

                  Regress R-Square        0.0601    Total R-Square        0.0601

                  Durbin-Watson           2.2057

 

 

                               Q and LM Tests for ARCH Disturbances

 

                      Order             Q    Pr > Q            LM    Pr > LM

 

                        1          0.0839    0.7721        0.0701     0.7912

                        2          5.3519    0.0688        5.1615     0.0757

                        3          6.0898    0.1073        5.7805     0.1228

                        4          8.6146    0.0715        7.1844     0.1265

                        5         19.2066    0.0018       15.9118     0.0071

                        6         20.9009    0.0019       16.6870     0.0105

                        7         23.2149    0.0016       16.8749     0.0182

                        8         23.2781    0.0030       17.8524     0.0224

                        9         41.5336    <.0001       28.6017     0.0008

                       10         41.6789    <.0001       28.6881     0.0014

                       11         49.4676    <.0001       30.1777     0.0015

                       12         49.8010    <.0001       31.4906     0.0017

 

                        

      At lag 6, for instance,

       

        Q(6)test  (20.91, p-value = 0.0019)

 

Ho: ut2 is a white noise up to lags 6.

             

          p-value is less than 5% ® Ho is         .

 

         Thus, ut2does / does not look like a white noise.

 

 

 

        LM test for ARCH effects (16.69, p-value = 0.0105)

 

 

Ho: no ARCH effect up to lags 6.

 

 

         p-value is less than 5% ® Ho is      .

 

 

           Thus, there is / is no ARCH effect.

 

SAS OUTPUT (continued):

 

                                                   Standard                 Approx

                                           Standard                 Approx    Variable

       Variable        DF     Estimate        Error    t Value    Pr > |t|    Label

 

       Intercept        1    -0.001241       0.1498      -0.01      0.9934

       YLAG             1      -0.2455       0.0763      -3.22      0.0016    YLAG

 

            ... This is a mean equation estimate.

(not with ARCH)

 

                                         GARCH Estimates

 

                   SSE               597.943653    Observations             164

                   MSE                  3.64600    Uncond Var          3.399403

                   Log Likelihood    -328.63655    Total R-Square        0.0571

                   SBC               682.772425    AIC               667.273092

                   Normality Test        6.2109    Pr > ChiSq            0.0448

 

                                      The AUTOREG Procedure

 

                                           Standard                 Approx    Variable

       Variable        DF     Estimate        Error    t Value    Pr > |t|    Label

 

       Intercept        1      -0.0132       0.1292      -0.10      0.9187

       YLAG             1      -0.3002       0.0988      -3.04      0.0024    YLAG

       ARCH0            1       0.1088       0.1763       0.62      0.5372

       ARCH1            1       0.0972       0.0799       1.22      0.2235

       GARCH1           1       0.8708       0.1211       7.19      <.0001

 

        ... This is the GARCH equation estimate.

We write the result as:

 

          yt = -0.0132 - 0.3002 yt-1 + t

                  Var(ut | Wt-1 ) = ht      .. conditional variance of ut

 

          ht = 0.1088 + 0.0972 t-12 + 0.8708 ht-1  .

 

 

Technical Details

 

Conditional versus Unconditional Expectation

 

(1) Mean

     Example:  AR(1) model

                    yt = c + f yt-1 + ut    

          Unconditional Mean:

                     m = E(yt) = E(c + f yt-1 + ut ) = c + f m + 0  since E(ut) = 0

                   Thus, m =

          Conditional Mean:

                   E(yt|Wt-1) = c + f yt-1 + 0 since E(yt|Wt-1) = 0

                   …  c and yt-1 is included in |Wt-1.

        Question:  Find

     (i) the unconditional mean of yt.

     (ii) conditional mean of yt.

    

(2) Variance

     Example:  GARCH(1,1) model

                   ht = w + a1ut-12 + b1 ht-1 

          Unconditional Variance:

                    s2 = Var(ut) = E(ut2) = E(w + a1ut-12 + b1 ht-1)

                          = w +  a1 E(ut-12) + b E(ht-1) = w +
a1 s2+ b1s2

                                Thus, s2 =

            Conditional Variance:

                   Var(ut | Wt-1 ) = E(ut2| Wt-1 ) = ht  
= w + a1ut-12 + b1 ht-1 

       

     Question:  Find

     (i) the unconditional variance of yt.

     (ii) conditional variance of yt.

 

Extensions of GARCH Models

 

1.     GARCH-M model (GARCH in Mean model)

          Add ht in the mean equation:

                   yt = c + f yt-1 +
d ht
+ ut    

    

If d > 0 and it is significant (t-test), there is a trade-off between the mean (return) and the conditional variance (time varying risk).

 

      EXAMPLE:

   PROC AUTOREG;

   MODEL Y = YLAG / ARCHTEST GARCH = ( q=1, p=1, MEAN=SQRT);

   RUN;

                                           Standard                 Approx    Variable

       Variable        DF     Estimate        Error    t Value    Pr > |t|    Label

 

       Intercept        1       0.3501       0.5520       0.63      0.5259

       YLAG             1      -0.3032       0.0990      -3.06      0.0022    YLAG

       ARCH0            1       0.1045       0.1719       0.61      0.5431

       ARCH1            1       0.0981       0.0774       1.27      0.2051

       GARCH1           1       0.8709       0.1170       7.44      <.0001

       DELTA          1      -0.2273      0.3321      -0.68      0.4937

 

We write the result as:

 

          yt = 0.3501 - 0.3032 yt-1- 0.2273 
+ t

                  Var(ut | Wt-1 ) = ht      .. conditional variance of ut

 

          ht = 0.1045 + 0.0981 t-12 + 0.8709 ht-1  .

 

2.     E-GARCH Model (Exponential GARCH)

 

          Two additions:

(i)                Take a log form and

(ii)             Add an additional term for a leverage effect (asymmetric effect).

          log ht  =  = w + b1log ht-1  + qVt-1 + g{|Vt-1| - E|Vt-1|}

                   where Vt-1  = ut/     

          More questions:

(i)                Why exponential?  To guarantee Positive variance.

ht  = exp(R.H.S.) > 0 always

 

(ii)             Asymmetric effect

                   qVt-1  ®  q < 0 in usual cases

                               if Vt-1 < 0, log ht increases ® ht increases.

                    if Vt-1 > 0, log ht decreases ® ht decreases.

 

EXAMPLE:

 

   PROC AUTOREG;

   MODEL Y = YLAG / ARCHTEST GARCH=(q=1, p=1, TYPE=EXP);

   RUN;

                                      The AUTOREG Procedure

 

                                           Standard                 Approx    Variable

       Variable        DF     Estimate        Error    t Value    Pr > |t|    Label

 

       Intercept        1       0.0907       0.1096       0.83      0.4080

       YLAG             1      -0.2852       0.0854      -3.34      0.0008    YLAG

       EARCH0           1       0.0168       0.0317       0.53      0.5967

       EARCH1           1       0.1390       0.0723       1.92      0.0546

       EGARCH1          1       0.9857       0.0231      42.60      <.0001

       THETA            1       1.1074       0.8273       1.34      0.1807

 

We write the result as:

 

          yt = 0.0907 - 0.2852 yt-1 + t

                  Var(ut | Wt-1 ) = ht      .. conditional variance of ut

 

                   log ht = 0.0168 + 0.9857 log ht-1  + 0.1390Vt-1

                                      + 1.1074{|Vt-1| - E|Vt-1|}

 

3.     I-GARCH model (Integrated Garch)

 

          Rearranging ht = w + a1ut-12 + b1 ht-1, we can have

                        ut2 = w + (a1 + b1) ut-12 + xt - b1xt-1  

                                with xt = ut2 - ht  such that E(xt) = E(ut2 - ht ) = E(xt-1) = 0

     Measures of Persistence = a1 + b1

                    If a1 + b1 = 1, we have 

                   ut2 = w + ut-12  (like a random walk model in variance!)

 

Then, the predicted variance is

 

          ht+s = w + ht+s-1 = … = w·s+ ht

            ht+s = ht  if w = 0 

 

This implies a persistence effect, as in the non-stationary (unit root) model.

 

This is an empirical phenomenon that we frequently observe in estimating GARCH models, especially in using high frequency data.

 

People who believe the I-GARCH model impose the restriction a1 + b1 = 1, and estimate one of these parameters (a1) and obtain the other (b1= 1 - a1). 

 

4.     Leverage-GARCH (or also called, T-GARCH or Threshold-GARCH)

         

GJR model (Glosten, Jaganathan and Runkle, 1993)

 

We add an additional term which appears only when ut-1 < 0 (negative shock): 
Asymmetric effect

                   ht   = w + a1ut-12 + b1 ht-1  + q It-1ut-12

                   where It-1  = 1  if ut-1 < 0  and It-1
 = 0  otherwise

         If q > 0, we say that there is a leverage effect.

          Bad news (ut-1 < 0) has an effect of (a1+q)ut-12 on the variance.

          Good news (ut-1 ³ 0) has an effect of a1 ut-12  on the variance.

          If q < 0, vice versa.

          One can test If q = 0 or q > 0 (t-test).

 

  The AUTOREG procedure supports the following variations of the GARCH models:

  • generalized ARCH (GARCH) ,  integrated GARCH (IGARCH)
  • exponential GARCH (EGARCH) , GARCH-in-mean (GARCH-M)

 

5.     Other Extensions

 

Component GARCH models

Multivariate GARCH models

Smooth Transition GARCH models (Lee..)

Many other Brothers and Sisters GARCH models..

 

Forecasting with GARCH Models

 

Example with GARCH(1,1)

          ht = w + a1ut-12 + b1 ht-1 

          with unconditional Variance s2 =

          Write:

                    ht = s2 + a1 (ut-12
- s2) + b1 (ht-1 - s2)

                    ht+s = s2 + a1 (ut+s-12
- s2) + b1 (ht+s-1 - s2)

Then, the predicted value for ht+s is:

          ht+s= w + (a1 + b1) (ht+s-1 -  s2)

 

 


Review Questions on ARCH-GARCH Models

 

1.  What are major limitations of using MA or EWMA models for volatility?

 

2.  What are economic reasoning for (i) conditional and (ii) heteroskedasticity (not constant variance) implied in the ARCH-GARCH models.

 

3.  Briefly explain about the GARCH-M model and underlying reasons for this model.

 

4.  Briefly explain about the T-GARCH model and underlying reasons for this model.

 

5.  Briefly explain about the E-GARCH model and underlying reasons for this model.

 

6.  Discuss how you can test for (existence of) ARCH effects.

 

7.  Using the excess rates of returns, which was defined as the difference between the rate of returns of interest rates and the rate of return of risk free assets (Treasury Bill), estimate a GARCH model of your choice.  Note that you do not need to difference
the data.  (File: excess.txt)

 

(a)  Identify the orders, p and q, of an ARMA(p,q) model.  Use AIC for this.

(b)  Using the residuals of the identified ARMA model estimation result, test for whiteness of residuals.  Use Q-statistics at 5 and 10 lags.  Also, check ACF and PACF of residuals.

(c)  Using the residuals of the identified ARMA model estimation result, test for ARCH effect.  Use 5 lags for this test. 

(d)  Estimate a GARCH(1, 1) model.

(e) Using the squared residuals of the estimated GARCH model, test for any further ARCH effect. Use Q-statistics at 5 and 10 lags.

(f)  Plot the estimated conditional heteroskedasticity.

(g) Find the unconditional mean and the unconditional variance from the ARMA-GARCH model that you have estimated.

 

 

抱歉!评论已关闭.