现在的位置: 首页 > 综合 > 正文

斯莱特 Slater’s condition

2019年05月03日 ⁄ 综合 ⁄ 共 1437字 ⁄ 字号 评论关闭

Slater's condition

From Wikipedia, the free encyclopedia

In mathematicsSlater's condition (or Slater
condition
) is a sufficient condition for strong
duality
 to hold for a convex optimization problem. This is a specific example of a constraint
qualification
. In particular, if Slater's condition holds for the primal problem,
then the duality gap is 0, and if the dual value is finite then it is attained.[1]

[edit]Mathematics

Given the problem

 \text{Minimize }\; f_0(x)
 \text{subject to: }\
 f_i(x) \le 0 , i = 1,\ldots,m
 Ax = b

with f_0,\ldots,f_m convex (and
therefore a convex optimization problem). Then strong duality holds if there exists an x \in \operatorname{relint}(D) (where
relint is the relative interior and D = \cap_{i = 0}^m \operatorname{dom}(f_i))
such that

f_i(x) < 0, i = 1,\ldots,m and
Ax = b.\,[2]

If the first k constraints, f_1,\ldots,f_k are linear
functions
, then strong duality holds if there exists an x \in \operatorname{relint}(D) such
that

f_i(x) \le 0, i = 1,\ldots,k,
f_i(x) < 0, i = k+1,\ldots,m, and
Ax = b.\,[2]

[edit]Generalized
Inequalities

Given the problem

 \text{Minimize }\; f_0(x)
 \text{subject to: }\
 f_i(x) \le_{K_i} 0 , i = 1,\ldots,m
 Ax = b

where f_0 is
convex and f_i is K_i-convex
for each i.
Then Slater's condition says that if there exists an x \in \operatorname{relint}(D) such
that

f_i(x) <_{K_i} 0, i = 1,\ldots,m and
Ax = b

then strong duality holds.[2]

[edit]References

  1. ^ Borwein,
    Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 978-0-387-29570-1.
  2. a b c Boyd,
    Stephen; Vandenberghe, Lieven (2004) (pdf). Convex Optimization.
    Cambridge University Press. ISBN 978-0-521-83378-3.
    Retrieved October 3, 2011
    .

抱歉!评论已关闭.